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Abstract 1. Introduction

The internet offers a wealth of audio-visual content
and communities such as Flickr and YouTube make large
amounts of photos and videos publicly available. In many
cases, an observer might wonder what elements are visible
on a certain shot or movie. Especially for natural scenes,
the answer to this question can be dif cult because only
yfew landmarks might be easily recognizable by non experts.
While the information about the camera position is (at least
roughly) known in many cases (photographer's knowledge
or camera GPS), the camera orientation is usually unknown
(digital compasses have poor accuracy).

The principal requirement is then the accurate alignment

We present a system for the annotation and augmen-
tation of mountain photographs. The key issue resides
in the registration of a given photograph with a 3D geo-
referenced terrain model. Typical outdoor images contain
little structural information, particularly mountain soes
whose aspect changes drastically across seasons and var
ing weather conditions. Existing approaches usually fail o
such dif cult scenarios. To avoid the burden of manual reg-
istration, we propose a novel automatic technique. Given
only a viewpoint and FOV estimates, the technique is able to
automatically derive the pose of the camera relative to the
geometric terrain model. We make use of silhouette edges, ' i 1 i ‘
which are among most reliable features that can be detected("€gistration) of a given photograph or video with a 3D geo-
in the targeted situations. Using an edge detection algo- ref(_arer)ced terrain model. _Interestlngly, such a precise lo
rithm, our technique then searches for the best match with calization would be useful in many contexts.. Services suc_h
silhouette edges rendered using the synthetic model. We de2S G00gle StreetView could be extended in an automatic
velop a robust matching metric allowing us to cope with the fashion to natural environments by exploiting user-predld
inevitable noise affecting detected edges (due to clouds, shots. Further, the photo can be used to texture virtual ter-

snow, rocks, forests, or any phenomenon not encoded in th&&iNS such as those in Google Earth. Also, annotations, de-
digital model). Once registered against the model, pho- rived from an annotated 3D terrain model, could be added

tographs can easily be augmented with annotatiaag ( automatically (highlighting important landmarks) which i

topographic data, peak names, paths), which would other- of interest when de_scri'bing or planning a eId. trip. Be-
wise imply a tedious fusion process. We further illustrate €@Us€ of such applications, cameras start being equipped
various other applications, such as 3D model-assisted im- With GPS in order to automatically track photo locations.

age enhancement, or, inversely, texturing of digital medel We will focus on a special class of content taken in
mountain regions, and provide a solution to automatically

derive the orientation that was used for a given shot, assum-
ing that the viewpoint location is known accurately enough,
f Ibaboud, mcadik, hpseidg@mpi-inf.mpg.de as well as the cameras's intrinsic parameterg (eld-of-
Y elmar.eisemann@telecom-paristech.fr view). It is often complicated or even impossible to access
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these regions with cars or robots, making user-provided im-age to image registration, but are less usable for image-
ages an interesting way to collect data. Furthermore, userso-model registration{3]. Nonetheless, for applications
also bene t from our solution, as it enables them to enhancesuch as panorama stitchin@9, feature-based techniques
(and even augment) their photos with supplementary data. work well and currently dominate. Unfortunately, our case
The input of our approach is a single photograph or a is more dif cult because we have to consider very differing
video and an indication of where it was taken. Our algo- views in a natural scene which exhibits many similar fea-
rithm then automatically nds the view direction by query- tures or features that might depend heavily on the time of
ing the position against a reference terrain model that wethe year €.g snow borders). This constraint also renders
assume to have at disposition. The latter is a smaller con-statistical methods’/], that are widely used in medical im-
straint because satellites can provide very reliable iterra age registration, less successful.
elevation maps even for less accessible regions. Once the The dif culty of this task is also underlined in the photo-
view is matched, we can transfer information from the ref- tourism approachi[7]. Indoor scenes and landmark shots
erence model into the photo. are handled automatically, while outdoor scenes have to
Our main contribution is the robust matching algorithm be aligned against a digital elevation map and a user has
to successfully nd the view orientation of given photo. to manually specify correspondences and similarity trans-
This task is far from trivial and many previous approaches forms to initiate an alignment. Similarly, Deep Phofj [

attempting to match up an image and 3D content can exhibitrequires manual registration and the user has to specify fou
high failure rates (Sectiol). The reason why our algo-  or more corresponding pairs of points.

rithm (Section3) provides a working solution is that we can In our experience, even simpler tasks, such as hori-
exploit the special nature of terrains. Mountain silhcegtt 4, estimation q], tend to fail in mountain scenes. Sim-
are relatively invariant under illumination changes, seas ilarly, advanced segmentation techniqués T6] proved

in uence, and even quality of the camera, therefore we de- ¢ sjje. Maybe for these reasons, existing photogramme-
tect these features and make them a major ingredient in OUfry approaches for mountain imagery, such as GIPFEL

matching metric (Sectiong 5, 6). Finally, we illustrate the http:// psed.org/gipfel.htm), strongly rely on user inter-
robustness and usefulness of our approach with several o{,antion.

the aforementioned application scenarios (Seci)drefore

. . Robust orientation estimation is a necessary component
concluding (Sectio). y P

of localization algorithms for autonomous robots. During
missions on moon or mars, it is impossible to rely on stan-
dard GPS techniques, but satellite imagery can deliver a ter

The problem of matching appears in several areas of re-rain model. Many of these algorithms rely on the horizon
search, but proves dif cult in most cases. Advances in cam- line contour (HLC) which is the outline of the terrain and
era engineering (i.e. digital compass and GPS receivers)speci ¢ feature points thereon that are matched with ex-
can facilitate the task in the future, but such data is neithe tracted terrain features’[ 21, 8]. Peaks of the HLC are
available in most current cameras nor present in video se-0ften used as features, but might not correspond to actual
quences. Furthermore, even when available, such informafe€aks in the terrain due to partial occlusion (clouds, fog, o
tion is not reliable enough for an accurate pose estimationhaze), terrain texturee(g snow), or an incorrect sky detec-
and will not be in a long time because the satellite infras- tion (see Fig.3). The latter is very dif cult, but particu-
tructure would need to change drastically to allow the pre- larly crucial for HLC approaches, especially when estimat-
cision we seek. Usually, existing GPS and compass-basednd Visibility between peaks in the query imag#.[Learn-
applications only present distant abstracted depictiergs ( Ing techniquesd, 14] can often lead to successful segmen-
Peak nder fittp://peak nder.ch, Google Skymap) without  tations, but they depend on the training set and implicitly
considering the actual view content. The same holds forassume similar query images.¢ same daytime). Further-
augmented reality applications, such as the Wikitude World more, even if successful, the localization of peaks in aghot
Browser fttp://www.wikitude.org. In a reasonable time s error pronef] and can lead to a deviation in the estimate.
frame only initial estimates of a camera pose, but not the Hence, sometimes only virtual views are testéd,[or an
nal ne-tune registration will be available. In the contex accurate compass is supposéd]|
we target, orientation must be known accurately to properly  Instead of peaks, using all occluding contours leads to
discriminate distant peaks, wereas position accuracyss le more robustness, but previous solutions][needed an ac-
crucial (negligible parallax). curate orientation estimate and assumed that the query im-

Registration comes in many variants, usually, instead age allows us to well-detect all occluding contours. As for
of matching an entire image, a rst step is to restrict the the HLC, this property rarely holds because haze, fog or
search to a small set of feature points. Such feature-basedighting variations often occlude crucial features. Ouf ap
(SIFT [13], SURF [1]) techniques work robustly for im-  proach does not penalize missing contours, and the detec-

2. Previous Work
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Figure 1. Overview of the proposed technique.

tion robustness does not suffer from false positives. 3.1. Spherical parameterization

Interestingly, despite their negative effect on contour de We start by de ning some basic notations. The cam-
tection, haze and fog potentially encode monocular depthgrg frame has itg axis pointing opposite to the viewing
information [] The assumptions on re ectance properties girection, with X (resp. Y) axis parallel to the horizon-
and fog/haze are relatively general and some assumptiong, (resp. vertical) axis of the image. The terrain frame
such as a ground plang]ffail in our context. Consequently, pas itsZ axis along the vertical. Rotations 8fO(3) are
f[he res_ulting depth estimates are usually coarse and prove%arameterized with the ZYZ Euler anglés. an element
insuf cient for our purposes. g 2 SO(3) is represented by three angles; ) so that

The area of direct image to model registration is less de-g = Rz ( )Ry ( )Rz ( ), whereRy andR; are rotations
veloped, and most techniques assume some structural elearound axe¥ andZ.
ments €.g straight lines, planes) in the input imade)] 5].
Unfortunately, mountain scenes are highly unstructured
making matching very challenging which lead us to develop
our approach.

3. Problem setup
N

Given a photograph, our goal is to estimate its pose rel- Figure 2. Terrainxr :yr ;21 ) and cameraxc ; yc ; z¢ ) frames.

atively to an accurate 3D terrain model based on a digital
elevation map (DEM). We assume that the camera’s eld of
view is known, as well as an estimate of the viewpoint
position (accuracy is discussed in Sectin Given these
hypotheses, we are looking for the rotatgp2 SO(3) that
maps the camera frame to the frame of the terrain. The se
of images that can be shot frop is entirely de ned by a
spherical imagé centered ap, against which we need to
match the query photo. We rst address the more costly, but precise ne-

We target outdoor scenes that do not allow to rely on Matching. In the targeted situationg. on photographs of
photogrammetry information, as it can vary drastically. In mountainous scenes, results produced by available edge-
stead, we rely on silhouette edges that can be obtaineg easildetection techniques usually contain inaccuracies whach ¢
from the terrain model and can be (partially) detected in the be classi ed as following (see also Fig):
photograph. In general, the detected silhouette map can be
error prone, but we enable a robust silhouette matching by
introducing a novel metric (Sectict). some detected edges are noisy;

Because a direct extensive search3@(3) using this
metric is very costly, we additionally propose a fast prepro
cess based on spherical cross-correlation (Se8&)iot ef- The noisy edges prevent us from using traditional edge
fectively reduces the search space to a very narrow subsetnatching techniques that often rely on features that are as-
to which the robust matching metric is then applied. The sumed to be present in both images. However the speci city
resulting algorithm is outlined in Fid.. of our problem allows us to derive a robust matching metric.

The synthetic spherical image of the terrain model from
py, will be denoted , and the spherical representation of the
photograph will be denotgal The corresponding silhouette
tssets will be denotellr andEp .

4. Robust silhouette map matching metric

some of the silhouette edges are not detected;

many detected edges are not silhouette edges.
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Figure 3. Types of edges detected in mountain scenes: S|Ihouette$dr(¢rlmie) or not encoded in the terrain model (red), noise and
non-silhouette edges (green). Referenae ¢ynthetic) silhouettes (gray) are not always detected.

Our main observation relates to the topology of if e enters the'e-neighborhood of an elemest 2
silhouette-maps: a feasible silhouette map in general con- E- and exits it after traversing over a length
guration can contain T-junctions, but no crossings. Cross
ings appear only in singular views, when two distinct sil-
houette edges align (Fig). Consequently, a curve detected
as an edge in the photograph, even if not silhouette, usually
follows a feature of some object and thus never crosses arhe non-linearity implied by an exponeat; > 1 in-
silhouette. This only happens if some object, not encodedcreases robustness: long matching edges will receive more
in the terrain model, occludes it. The probability for such strength than sets of small disconnected segments of the
events remains low, which will render the method more ro- same total length. Finally, the matching likelihood
bust despite potentially low-quality edges. under the candidate rotatianis obtained by summing the

values of each of the (accordingly displaced) individual
edges ofp .

In practice the computation is performed as follows:
rst, Er is rasterized with a thicknesg into a suf ciently
high-resolution spherical image; second, Beedges are

Figure 4. Speci ¢ topology of terrain silhouettes: separate edges warped according tg, traversed and tested against the ras-
meet with T-junctions (green), crossings (red) are singular. terizedEx for potential intersections. The cost of this sim-
ple approach i©D(mn), wherem is the resolution of the

To evaluate the likelihood of a given orientatignthe rasterizeds= andn the total number of segments & .
two edge sets (from photo and model) are overlayed accord- |nterestingly, the metric relies on all the information
ing tog. Each edge, from Ep is considered independently  available in the detected edges: even non-silhouette edges
and tested again&: . To account for noise, any potential help to nd the correct match by preventing actual silhou-
matching with an edge; must be scanned within some tol-  ette edges from crossing them (F&). Therefore it would
erance’e. Whene, enters the .-neighborhood of an edge  theoretically be possible to nd the correct matches even if
& 2 Eg, four distinct cases can happen, as depicted by all silhouette edges were missed.

Fig 5. A threshold s is used to distinguish the case where
€ is following & from the case where it crosses it.

LY y L\Lx Lw‘
7 4 7 ' Ve
4/ \ / .. /-
= e’ \f.e/

Figure 5. The four possible situations for edge-to-edge matching.

— if it exits on the same side or if > 74 , the
tting energy " is added;
— else, a constant penalty casioss iS subtracted.

Figure 6. Detected non-silhouette edges also help the matching
For a single edge,, the matching likelihood value is ~ Process: a pose of a reference silhouette (blue) is prevented if it

computed as follows: crosses many detected edges (red).
parts whereg, stays outside th&.-neighborhood of Although this metric allows robust matching (see Sec-
elements o count a<); tion7), it requires a dense 3D sampling®O(3), leading to
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prohibitive computation times. We avoid this problem with
an effective search space reduction preprocess, presented
now.

5. Spherical cross-correlation for search space

reduction 1 G S\

. . . Figure 7. Left:M (f; p) as afunction op (fora xed f). Classical
To address the problem of the high cost implied by a cross-correlation (CC) disregards orientations, wereas our vector-

dgnse sampling &6 O(3), we move to the Fourier domain.  g|q cross-correlation (VCC) properly penalizes crossings.
It is well known that the cross-correlation between two

n images can be computed @™(n?logn) using the fast

fourier transform (FFT). This has recently been extended 5.2. Spherical 2D-vector elds cross correlation
to spherical imagesl[l]. The spherical cross-correlation of
two complex-valued spherical functiohsandp is de ned
onSO(3) as:

In order to be used as a matching likelihood estimation,
this integral would need to be evaluated for any candidate
7 rotationg, by rotatingp accordingly. However, now that

: 5 _ v et values are vectors, we need to take the effect of the rotation
89250(3): 7p (9 52 Fp(g *d into account. Because we de ned the transformation of the

and can be evaluated ®(n2log(n)) for n2-sampled spher- camera relative to the world frame, we can show that the

ical functions via FFT algorithms oc80(3) [11]. expression op under a rotatiog =( ; ; ) is:
We could directly apply this to our problem by sam-

pling the two silhouette-maps on the sphere and computing R +,:p(g 'w) with R =

the cross-correlation of these two binary-valued maps (1 on

edges, 0 elsewhere). The main problem here is that it com-The formula stems from the fact that in the ZYZ euler an-

pletely disregards the relative orientation of edges. With gles parametrization we are using, thangle corresponds

our noise-prone detected edge-maps, the maximum crossto the rotation of the camera around its viewing direction

correlation value would be found where most edges overlap, (the 5 offset re ects that a horizontally-looking camera

which would only work if the detected edge-map contained with a zero value is tilted by).

all and only the silhouette edges. Our operator needs to be modi ed as follows to take the

rotation ofp into account:

cos sin
sin cos

5.1. Angular similarity operator

Our goal is to integrate edge orientations in the cross- Mg(f;p)= 2 Scos 2(¢ (p*+ + 35
correlation. The orientation information can be kept by 2
rasterizingEr as a 2D real-valued vector eld(!) = and for a candidate rotatigmwe then de ne the matching
(fx(*);fy(1)), being the tangent vectors of the edges likelihood betweeri andp as follows:
where they appear, and zero elsewhere (8igWe de ne Z
theangular similarity operato (f; p) as follows: VCC(f:p)(g) = . M (f(!);p(g 1 ))dr:

M (fip)= 7 jcos2(s  p); _ _
where( ¢; ¢) and( p; p) are the polar representations of 5.3. Ef cient computation

f andp (see Fig.7). The value produced by this operatoris:  Using the representation of 2D vectors as complex
1. positive for (close to) parallel vectors, numbers, VCC can be expressed as one spherical cross-
9 five f | ) h | ¢ correlation operation. Indeet¥] (f;p) can be rewritten as

. negative for (close to) orthogonal vectors, follows, n o
3. zero if one of the vector is zero. M (f;p) = Re 2
The matching likelihood between two spherical func- \ynere
tionsf andp canzbe expressed as: = ;' and p= pei b
M Q) p(t)d, This leads to the following VCC formulation:
SZ

z
Re  f2(1) el *2)p(g 1) “d!
SZ

so that values of where edges closely match are counted veC(f:p)(g)
positively while those where edges cross almost perpendic-

ularly are counted negatively. Furthermore, valued of

where eithef or p has no edge do not affect the integral.

n>" 0
Re e 2 f22p%(g) :
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Figure 8. Detection and processing of edges into orientation vectorsf(htue), used to nd the optimal registration (red frame).

In other words, we expressed the computation as a crossimage, which is then vectorized into an edge riap
correlation betweefi2 andp?, that is weighted by e 2
and reduced to its real part. The dominant cost of the match- cient matching BecauseSO(3) has three dimen-
ing space reduction is therefore the cross-correlation-com

D 3 sions, the robust matching metric still needs to be evadliate
putation,i.e. O(n®logn).

on many sampled rotation candidates, even after the search
. . space reduction process. Nonetheless, each evaluation be-
6. Implementation details ing independent, the overall process is highly parallbliza
Terrain model We experimented with two terrain Making a GPU mapping possible that cuts down the com-
datasets: 1) coverage of the Alps with 24 meters spacedPutation time from several hours to a few seconds.

samples [fttp://www.view nderpanoramas.oyg 2) Na-

tional Elevation Dataset (USGSftp://ned.usgs.gdycov- /- Results

ering the United States at thrice bigger resolution. Exper- Our approach was implemented on a Dell T7500 work-
iments showed the importance of considering the Earth'sStation equipped with two six-core Intel Xeon processors,

curvature when rendering the synthetic panoramas. one GeForce GTX 480 GPU, and 23GB RAM. With our
simple implementation, the overall process takes around
Image processing The input photograph is rstremapped 2 minutes, critical parts being compass edge detection
to a rectilinearly projected RGB image with known FOV, (around 1 min.), spherical cross-correlation (less thaa on
using the camera's intrinsic parameters (read from the at-minute, with sampling bandwidths of 1024 8¢ and 256
tached EXIF data, assisted by a camera database if neceger SO(3)) and nal matching metric evaluation (around 20
sary). We then apply theompassdge detectorl[f], pa- s. with the GPU implementation). Of a collection contain-
rameterized by a radius producing separate maps for edge ing 28 photographs randomly chosen from Flickr, 86% were
strengths (Fig3) and orientations, that are easily combined correctly aligned by our technique (interestingly, VCC was
into a vector eld of tangent vectors (Fig). This edge de-  already maximized at the correct orientation for 25% of the
tector has the particularity of fully exploiting the colar-i tested examples). We examined two different mountainous
formation, unlike classical ones that handle only grayscal regions (Alps in Europe and Rocky Mountains in USA) and
images. The resultis then thresholded (paramétar keep found that our approach performs similarly. The matching
only signi cant edge. The edge mdf (a set of vector- s generally very accuratee. below0:2 (Fig. 1, 9and10).
ized lines) is nally extracted by thinningl}] and vector- Small deviations mostly correspond to imperfections of the
ization [4]. The following parameters were used without 3D model. Experimentally, an accuracy below a few hun-
further need of dynamic adaptation=1, =0:7. dred meters for the viewpoint is suf cient.

Panorama processing Generating silhouettes from the 7.1. Applications

3D terrain data is a classical computer graphics problem for Annotations Our solution enables us to mark a certain
which several options exist. Exploiting the GPU, we ap- peak in all given photos if it is visible. This is a dif cult @
ply raycasting to render the silhouettes into a 2D cylinalric  tedious task that often can only be performed by experts.
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Figure 9. An example of annotated panorama image superposed thetsypanorama.

By testing the visibility of the corresponding mountain in to derive which part of the scene was actually visible and
the 3D terrain model, we can easily decide what part of it could bene t from the image content.
shows in the photograph, and how far it is from the camera

position. Some results are illustrated in Ficand10. Photo navigation Similarly to photo tourism7], we can

add the photos into the 3D terrain model to enable an intu-

P e e auteraatton (4026m) itive navigation. This allows illustrating or preparingbs,
g etschhorn (4182m) Schreckhorn (4062m) even when relying on photos of others.
Bietschiorn (3921m) onch (4093m)
ig. d’ i GroRes Griinhprn (4038 Eiger (3960m)
Ao crArgentere (364 ‘ ung’gaiu (414T1m) Piz Git (32401

Image Enhancement and Expressive Rendering Using

the underlying 3D terrain model, we can enhance an ex-
isting image or achieve non-photorealistic effects. E.g.,
we can perform informed model-based image dehazing
(Fig. 11), enhance certain objects, or even mix the view with
geological datad.g using USGS metadata).

Figure 10. Annotated photo created using the proposed techniqueVideo Matching  On a frame-by-frame basis, we can also
optimize video sequences. Which is relatively fast because
the search space is reasonably reduced by assuming a slow
displacement. One could also initialize the search with the

Augmented reality We can also achieve augmented frame that gave the highest response in the rst search step,
views of the mountain landscape. Here, we add paths, land+t in practice, we found that unnecessary

marks and other 3D objects into the 3D terrain model. By

transferring only the visible pixels of these models, we can g8 Conclusions and Future Work

add them into the photograph. Furthermore, we can relight

them according to the shot. For this, we can either rely on  We presented a solution to determine the orientation of
the time stamp of the photo to deduce the position of the sunmountain photographs by exploiting available digital ele-
and weather conditions from according databases. Alterna-vation data. Although this is a very challenging task, we
tively, we can optimize the sun position and illumination by showed that our approach delivers a robust and precise re-
comparing the lit terrain model to the captured photo. We sult. The accuracy of our solution enabled various inter-
rely on a simple model with a point light (sun) and ambient esting applications that we presented in this paper. Our
occlusion (sky). The optimization process is 1D and con- technical contributions, such as the camera pose estimatio
verges quickly. based on edge-to-silhouette matching could nd applicatio
in other contexts of more general matching problems.

In the future, we want to explore other cuesy the at-
mospherical scattering, aerial perspective) that mighg he
us in addressing more general environments and improving
the edge detection part for these scenaric. [

Texture transfer Using our approach, photo collections
can also easily be used to transfer texture informationdnto
3D mountain model such as those of Google Earth. Having
found the corresponding camera view, it is enough to apply
a projective texture mapping (including a shadow map test)  !Refer to supplemental movie for video matching examples.
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Figure 11. Application to image contrast enhancement: the original inkeflei§ modulated by the diffuse lighting component computed
on the synthetic model (particularly pro table for distant mountains, vehmmntrast is affected by atmospheric effects).
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