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Abstract

We present a system for the annotation and augmen-
tation of mountain photographs. The key issue resides
in the registration of a given photograph with a 3D geo-
referenced terrain model. Typical outdoor images contain
little structural information, particularly mountain scenes
whose aspect changes drastically across seasons and vary-
ing weather conditions. Existing approaches usually fail on
such dif�cult scenarios. To avoid the burden of manual reg-
istration, we propose a novel automatic technique. Given
only a viewpoint and FOV estimates, the technique is able to
automatically derive the pose of the camera relative to the
geometric terrain model. We make use of silhouette edges,
which are among most reliable features that can be detected
in the targeted situations. Using an edge detection algo-
rithm, our technique then searches for the best match with
silhouette edges rendered using the synthetic model. We de-
velop a robust matching metric allowing us to cope with the
inevitable noise affecting detected edges (e.g. due to clouds,
snow, rocks, forests, or any phenomenon not encoded in the
digital model). Once registered against the model, pho-
tographs can easily be augmented with annotations (e.g.
topographic data, peak names, paths), which would other-
wise imply a tedious fusion process. We further illustrate
various other applications, such as 3D model-assisted im-
age enhancement, or, inversely, texturing of digital models.

� f lbaboud, mcadik, hpseidelg@mpi-inf.mpg.de
yelmar.eisemann@telecom-paristech.fr

1. Introduction

The internet offers a wealth of audio-visual content
and communities such as Flickr and YouTube make large
amounts of photos and videos publicly available. In many
cases, an observer might wonder what elements are visible
on a certain shot or movie. Especially for natural scenes,
the answer to this question can be dif�cult because only
few landmarks might be easily recognizable by non experts.
While the information about the camera position is (at least
roughly) known in many cases (photographer's knowledge
or camera GPS), the camera orientation is usually unknown
(digital compasses have poor accuracy).

The principal requirement is then the accurate alignment
(registration) of a given photograph or video with a 3D geo-
referenced terrain model. Interestingly, such a precise lo-
calization would be useful in many contexts. Services such
as Google StreetView could be extended in an automatic
fashion to natural environments by exploiting user-provided
shots. Further, the photo can be used to texture virtual ter-
rains such as those in Google Earth. Also, annotations, de-
rived from an annotated 3D terrain model, could be added
automatically (highlighting important landmarks) which is
of interest when describing or planning a �eld trip. Be-
cause of such applications, cameras start being equipped
with GPS in order to automatically track photo locations.

We will focus on a special class of content taken in
mountain regions, and provide a solution to automatically
derive the orientation that was used for a given shot, assum-
ing that the viewpoint location is known accurately enough,
as well as the cameras's intrinsic parameters (e.g. �eld-of-
view). It is often complicated or even impossible to access
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these regions with cars or robots, making user-provided im-
ages an interesting way to collect data. Furthermore, users
also bene�t from our solution, as it enables them to enhance
(and even augment) their photos with supplementary data.

The input of our approach is a single photograph or a
video and an indication of where it was taken. Our algo-
rithm then automatically �nds the view direction by query-
ing the position against a reference terrain model that we
assume to have at disposition. The latter is a smaller con-
straint because satellites can provide very reliable terrain
elevation maps even for less accessible regions. Once the
view is matched, we can transfer information from the ref-
erence model into the photo.

Our main contribution is the robust matching algorithm
to successfully �nd the view orientation of given photo.
This task is far from trivial and many previous approaches
attempting to match up an image and 3D content can exhibit
high failure rates (Section2). The reason why our algo-
rithm (Section3) provides a working solution is that we can
exploit the special nature of terrains. Mountain silhouettes
are relatively invariant under illumination changes, seasonal
in�uence, and even quality of the camera, therefore we de-
tect these features and make them a major ingredient in our
matching metric (Sections4, 5, 6). Finally, we illustrate the
robustness and usefulness of our approach with several of
the aforementioned application scenarios (Section7) before
concluding (Section8).

2. Previous Work

The problem of matching appears in several areas of re-
search, but proves dif�cult in most cases. Advances in cam-
era engineering (i.e. digital compass and GPS receivers)
can facilitate the task in the future, but such data is neither
available in most current cameras nor present in video se-
quences. Furthermore, even when available, such informa-
tion is not reliable enough for an accurate pose estimation
and will not be in a long time because the satellite infras-
tructure would need to change drastically to allow the pre-
cision we seek. Usually, existing GPS and compass-based
applications only present distant abstracted depictions (e.g.
Peak�nder (http://peak�nder.ch), Google Skymap) without
considering the actual view content. The same holds for
augmented reality applications, such as the Wikitude World
Browser (http://www.wikitude.org). In a reasonable time
frame only initial estimates of a camera pose, but not the
�nal �ne-tune registration will be available. In the context
we target, orientation must be known accurately to properly
discriminate distant peaks, wereas position accuracy is less
crucial (negligible parallax).

Registration comes in many variants, usually, instead
of matching an entire image, a �rst step is to restrict the
search to a small set of feature points. Such feature-based
(SIFT [13], SURF [1]) techniques work robustly for im-

age to image registration, but are less usable for image-
to-model registration [23]. Nonetheless, for applications
such as panorama stitching [19], feature-based techniques
work well and currently dominate. Unfortunately, our case
is more dif�cult because we have to consider very differing
views in a natural scene which exhibits many similar fea-
tures or features that might depend heavily on the time of
the year (e.g. snow borders). This constraint also renders
statistical methods [24], that are widely used in medical im-
age registration, less successful.

The dif�culty of this task is also underlined in the photo-
tourism approach [17]. Indoor scenes and landmark shots
are handled automatically, while outdoor scenes have to
be aligned against a digital elevation map and a user has
to manually specify correspondences and similarity trans-
forms to initiate an alignment. Similarly, Deep Photo [9]
requires manual registration and the user has to specify four
or more corresponding pairs of points.

In our experience, even simpler tasks, such as hori-
zon estimation [6], tend to fail in mountain scenes. Sim-
ilarly, advanced segmentation techniques [7, 16] proved
futile. Maybe for these reasons, existing photogramme-
try approaches for mountain imagery, such as GIPFEL
(http://�psed.org/gipfel.html), strongly rely on user inter-
vention.

Robust orientation estimation is a necessary component
of localization algorithms for autonomous robots. During
missions on moon or mars, it is impossible to rely on stan-
dard GPS techniques, but satellite imagery can deliver a ter-
rain model. Many of these algorithms rely on the horizon
line contour (HLC) which is the outline of the terrain and
speci�c feature points thereon that are matched with ex-
tracted terrain features [2, 21, 8]. Peaks of the HLC are
often used as features, but might not correspond to actual
peaks in the terrain due to partial occlusion (clouds, fog, or
haze), terrain texture (e.g. snow), or an incorrect sky detec-
tion (see Fig.3). The latter is very dif�cult, but particu-
larly crucial for HLC approaches, especially when estimat-
ing visibility between peaks in the query image [8]. Learn-
ing techniques [8, 14] can often lead to successful segmen-
tations, but they depend on the training set and implicitly
assume similar query images (e.g. same daytime). Further-
more, even if successful, the localization of peaks in a photo
is error prone [2] and can lead to a deviation in the estimate.
Hence, sometimes only virtual views are tested [21], or an
accurate compass is supposed [20].

Instead of peaks, using all occluding contours leads to
more robustness, but previous solutions [18] needed an ac-
curate orientation estimate and assumed that the query im-
age allows us to well-detect all occluding contours. As for
the HLC, this property rarely holds because haze, fog or
lighting variations often occlude crucial features. Our ap-
proach does not penalize missing contours, and the detec-
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Figure 1. Overview of the proposed technique.

tion robustness does not suffer from false positives.

Interestingly, despite their negative effect on contour de-
tection, haze and fog potentially encode monocular depth
information [3] The assumptions on re�ectance properties
and fog/haze are relatively general and some assumptions
such as a ground plane [3] fail in our context. Consequently,
the resulting depth estimates are usually coarse and proved
insuf�cient for our purposes.

The area of direct image to model registration is less de-
veloped, and most techniques assume some structural ele-
ments (e.g. straight lines, planes) in the input image [10, 5].
Unfortunately, mountain scenes are highly unstructured
making matching very challenging which lead us to develop
our approach.

3. Problem setup

Given a photograph, our goal is to estimate its pose rel-
atively to an accurate 3D terrain model based on a digital
elevation map (DEM). We assume that the camera's �eld of
view is known, as well as an estimatepv of the viewpoint
position (accuracy is discussed in Section7). Given these
hypotheses, we are looking for the rotation~g 2 SO(3) that
maps the camera frame to the frame of the terrain. The set
of images that can be shot frompv is entirely de�ned by a
spherical imagef centered atpv against which we need to
match the query photo.

We target outdoor scenes that do not allow to rely on
photogrammetry information, as it can vary drastically. In-
stead, we rely on silhouette edges that can be obtained easily
from the terrain model and can be (partially) detected in the
photograph. In general, the detected silhouette map can be
error prone, but we enable a robust silhouette matching by
introducing a novel metric (Section4).

Because a direct extensive search onSO(3) using this
metric is very costly, we additionally propose a fast prepro-
cess based on spherical cross-correlation (Section5). It ef-
fectively reduces the search space to a very narrow subset,
to which the robust matching metric is then applied. The
resulting algorithm is outlined in Fig.1.

3.1. Spherical parameterization

We start by de�ning some basic notations. The cam-
era frame has itsZ axis pointing opposite to the viewing
direction, withX (resp. Y ) axis parallel to the horizon-
tal (resp. vertical) axis of the image. The terrain frame
has itsZ axis along the vertical. Rotations ofSO(3) are
parameterized with the ZYZ Euler angles,i.e. an element
g 2 SO(3) is represented by three angles(�; �;  ) so that
g = RZ (� )RY (� )RZ ( ), whereRY andRZ are rotations
around axesY andZ .

Figure 2. Terrain (xT ; yT ; zT ) and camera (xC ; yC ; zC ) frames.

The synthetic spherical image of the terrain model from
pv will be denotedf , and the spherical representation of the
photograph will be denotedp. The corresponding silhouette
sets will be denotedEF andEP .

4. Robust silhouette map matching metric

We �rst address the more costly, but precise �ne-
matching. In the targeted situation,i.e. on photographs of
mountainous scenes, results produced by available edge-
detection techniques usually contain inaccuracies which can
be classi�ed as following (see also Fig.3):

� some of the silhouette edges are not detected;

� some detected edges are noisy;

� many detected edges are not silhouette edges.

The noisy edges prevent us from using traditional edge
matching techniques that often rely on features that are as-
sumed to be present in both images. However the speci�city
of our problem allows us to derive a robust matching metric.
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Figure 3. Types of edges detected in mountain scenes: silhouettes encoded (blue) or not encoded in the terrain model (red), noise and
non-silhouette edges (green). Reference (i.e. synthetic) silhouettes (gray) are not always detected.

Our main observation relates to the topology of
silhouette-maps: a feasible silhouette map in general con-
�guration can contain T-junctions, but no crossings. Cross-
ings appear only in singular views, when two distinct sil-
houette edges align (Fig.4). Consequently, a curve detected
as an edge in the photograph, even if not silhouette, usually
follows a feature of some object and thus never crosses a
silhouette. This only happens if some object, not encoded
in the terrain model, occludes it. The probability for such
events remains low, which will render the method more ro-
bust despite potentially low-quality edges.

Figure 4. Speci�c topology of terrain silhouettes: separate edges
meet with T-junctions (green), crossings (red) are singular.

To evaluate the likelihood of a given orientationg, the
two edge sets (from photo and model) are overlayed accord-
ing tog. Each edgeep from EP is considered independently
and tested againstEF . To account for noise, any potential
matching with an edgeef must be scanned within some tol-
erance"e. Whenep enters the"e-neighborhood of an edge
ef 2 EF , four distinct cases can happen, as depicted by
Fig 5. A threshold̀ f it is used to distinguish the case where
ep is following ef from the case where it crosses it.

Figure 5. The four possible situations for edge-to-edge matching.

For a single edgeep, the matching likelihood value is
computed as follows:

� parts whereep stays outside the"e-neighborhood of
elements ofEF count as0;

� if ep enters the"e-neighborhood of an elementef 2
EF and exits it after traversing over a length`:

– if it exits on the same side or if̀ > ` f it , the
�tting energy `a f it is added;

– else, a constant penalty costccross is subtracted.

The non-linearity implied by an exponentaf it > 1 in-
creases robustness: long matching edges will receive more
strength than sets of small disconnected segments of the
same total length. Finally, the matching likelihood forEP

under the candidate rotationg is obtained by summing the
values of each of the (accordingly displaced) individual
edges ofEP .

In practice the computation is performed as follows:
�rst, EF is rasterized with a thickness"e into a suf�ciently
high-resolution spherical image; second, theEP edges are
warped according tog, traversed and tested against the ras-
terizedEF for potential intersections. The cost of this sim-
ple approach isO(mn), wherem is the resolution of the
rasterizedEF andn the total number of segments ofEP .

Interestingly, the metric relies on all the information
available in the detected edges: even non-silhouette edges
help to �nd the correct match by preventing actual silhou-
ette edges from crossing them (Fig.6). Therefore it would
theoretically be possible to �nd the correct matches even if
all silhouette edges were missed.

Figure 6. Detected non-silhouette edges also help the matching
process: a pose of a reference silhouette (blue) is prevented if it
crosses many detected edges (red).

Although this metric allows robust matching (see Sec-
tion7), it requires a dense 3D sampling ofSO(3), leading to

44



prohibitive computation times. We avoid this problem with
an effective search space reduction preprocess, presented
now.

5. Spherical cross-correlation for search space
reduction

To address the problem of the high cost implied by a
dense sampling ofSO(3), we move to the Fourier domain.
It is well known that the cross-correlation between twon �
n images can be computed inO(n2 logn) using the fast
fourier transform (FFT). This has recently been extended
to spherical images [11]. The spherical cross-correlation of
two complex-valued spherical functionsf andp is de�ned
onSO(3) as:

8g 2 SO(3); f ? p (g) =
Z

S2
f (! )p(g� 1! )d!;

and can be evaluated inO(n3log(n)) for n2-sampled spher-
ical functions via FFT algorithms onSO(3) [11].

We could directly apply this to our problem by sam-
pling the two silhouette-maps on the sphere and computing
the cross-correlation of these two binary-valued maps (1 on
edges, 0 elsewhere). The main problem here is that it com-
pletely disregards the relative orientation of edges. With
our noise-prone detected edge-maps, the maximum cross-
correlation value would be found where most edges overlap,
which would only work if the detected edge-map contained
all and only the silhouette edges.

5.1. Angular similarity operator

Our goal is to integrate edge orientations in the cross-
correlation. The orientation information can be kept by
rasterizingEF as a 2D real-valued vector �eldf (! ) =
(f x (! ); f y (! )) , being the tangent vectors of the edges
where they appear, and zero elsewhere (Fig.8). We de�ne
theangular similarity operatorM (f ; p) as follows:

M (f ; p) = � 2
f � 2

p cos 2(� f � � p);

where(� f ; � f ) and(� p; � p) are the polar representations of
f andp (see Fig.7). The value produced by this operator is:

1. positive for (close to) parallel vectors,

2. negative for (close to) orthogonal vectors,

3. zero if one of the vector is zero.

The matching likelihood between two spherical func-
tionsf andp can be expressed as:

Z

S2
M (f (! ); p(! ))d!;

so that values of! where edges closely match are counted
positively while those where edges cross almost perpendic-
ularly are counted negatively. Furthermore, values of!
where eitherf or p has no edge do not affect the integral.

1

-1

1

-1

F

P

qq

CC VCC
Figure 7. Left:M (f ; p) as a function ofp (for a �xed f ). Classical
cross-correlation (CC) disregards orientations, wereas our vector-
�eld cross-correlation (VCC) properly penalizes crossings.

5.2. Spherical 2Dvector �elds cross correlation

In order to be used as a matching likelihood estimation,
this integral would need to be evaluated for any candidate
rotationg, by rotatingp accordingly. However, now thatp
values are vectors, we need to take the effect of the rotation
into account. Because we de�ned the transformation of the
camera relative to the world frame, we can show that the
expression ofp under a rotationg = ( �; �;  ) is:

R + �
2

:p(g� 1w) with R� =
�

cos� � sin �
sin � cos�

�
:

The formula stems from the fact that in the ZYZ euler an-
gles parametrization we are using, the angle corresponds
to the rotation of the camera around its viewing direction
(the �

2 offset re�ects that a horizontally-looking camera
with a zero value is tilted by�

2 ).
Our operator needs to be modi�ed as follows to take the

rotation ofp into account:

M g(f ; p) = � 2
f � 2

p cos 2(� f � (� p +  +
�
2

)) ;

and for a candidate rotationg we then de�ne the matching
likelihood betweenf andp as follows:

VCC(f ; p)(g) =
Z

S2
M g(f (! ); p(g� 1! ))d!:

5.3. Ef�cient computation

Using the representation of 2D vectors as complex
numbers, VCC can be expressed as one spherical cross-
correlation operation. Indeed,M (f ; p) can be rewritten as
follows,

M (f ; p) = Re
n

f̂ 2p̂2
o

;

where
f̂ = � f ei� f and p̂ = � pei� p :

This leads to the following VCC formulation:

VCC(f; p )(g) = Re
� Z

S2
f̂ 2(! )

�
ei (  + �

2 ) p̂(g� 1! )
� 2

d!
�

= � Re
n

e� i 2 f̂ 2 ? p̂2 (g)
o

:
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Projection of original image

Rendered panorama with silhouette edges

Edge detector output Thresholded edges Processed orientation vectors

Correct alignment

Figure 8. Detection and processing of edges into orientation vectors (blueframe), used to �nd the optimal registration (red frame).

In other words, we expressed the computation as a cross-
correlation between̂f 2 andp̂2, that is weighted by� e� i 2

and reduced to its real part. The dominant cost of the match-
ing space reduction is therefore the cross-correlation com-
putation,i.e. O(n3 logn).

6. Implementation details

Terrain model We experimented with two terrain
datasets: 1) coverage of the Alps with 24 meters spaced
samples (http://www.view�nderpanoramas.org); 2) Na-
tional Elevation Dataset (USGS,http://ned.usgs.gov), cov-
ering the United States at thrice bigger resolution. Exper-
iments showed the importance of considering the Earth's
curvature when rendering the synthetic panoramas.

Image processing The input photograph is �rst remapped
to a rectilinearly projected RGB image with known FOV,
using the camera's intrinsic parameters (read from the at-
tached EXIF data, assisted by a camera database if neces-
sary). We then apply thecompassedge detector [15], pa-
rameterized by a radius� , producing separate maps for edge
strengths (Fig3) and orientations, that are easily combined
into a vector �eld of tangent vectors (Fig.8). This edge de-
tector has the particularity of fully exploiting the color in-
formation, unlike classical ones that handle only grayscale
images. The result is then thresholded (parameter� ) to keep
only signi�cant edge. The edge mapEP (a set of vector-
ized lines) is �nally extracted by thinning [12] and vector-
ization [4]. The following parameters were used without
further need of dynamic adaptation:� = 1 , � = 0 :7.

Panorama processing Generating silhouettes from the
3D terrain data is a classical computer graphics problem for
which several options exist. Exploiting the GPU, we ap-
ply raycasting to render the silhouettes into a 2D cylindrical

image, which is then vectorized into an edge mapEF .

Ef�cient matching BecauseSO(3) has three dimen-
sions, the robust matching metric still needs to be evaluated
on many sampled rotation candidates, even after the search
space reduction process. Nonetheless, each evaluation be-
ing independent, the overall process is highly parallelizable
making a GPU mapping possible that cuts down the com-
putation time from several hours to a few seconds.

7. Results

Our approach was implemented on a Dell T7500 work-
station equipped with two six-core Intel Xeon processors,
one GeForce GTX 480 GPU, and 23GB RAM. With our
simple implementation, the overall process takes around
2 minutes, critical parts being compass edge detection
(around 1 min.), spherical cross-correlation (less than one
minute, with sampling bandwidths of 1024 forS2 and 256
for SO(3)) and �nal matching metric evaluation (around 20
s. with the GPU implementation). Of a collection contain-
ing 28 photographs randomly chosen from Flickr, 86% were
correctly aligned by our technique (interestingly, VCC was
already maximized at the correct orientation for 25% of the
tested examples). We examined two different mountainous
regions (Alps in Europe and Rocky Mountains in USA) and
found that our approach performs similarly. The matching
is generally very accurate,i.e. below0:2� (Fig.1, 9 and10).
Small deviations mostly correspond to imperfections of the
3D model. Experimentally, an accuracy below a few hun-
dred meters for the viewpoint is suf�cient.

7.1. Applications

Annotations Our solution enables us to mark a certain
peak in all given photos if it is visible. This is a dif�cult and
tedious task that often can only be performed by experts.
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Figure 9. An example of annotated panorama image superposed on synthetic panorama.

By testing the visibility of the corresponding mountain in
the 3D terrain model, we can easily decide what part of it
shows in the photograph, and how far it is from the camera
position. Some results are illustrated in Fig.9 and10.

Piz Git (3240m)

Bietschhorn (3921m) Mönch (4093m)

Großes Fiescherhorn (4026m)
Lauteraarhorn (4028m)

Großes Grünhorn (4038m)

Aletschhorn (4182m)

Finsteraarhorn (4254m)

Schreckhorn (4062m)

Eiger (3960m)
Jungfrau (4144m)

Aig. d’Argentiere (3864m)

Figure 10. Annotated photo created using the proposed technique.

Augmented reality We can also achieve augmented
views of the mountain landscape. Here, we add paths, land-
marks and other 3D objects into the 3D terrain model. By
transferring only the visible pixels of these models, we can
add them into the photograph. Furthermore, we can relight
them according to the shot. For this, we can either rely on
the time stamp of the photo to deduce the position of the sun
and weather conditions from according databases. Alterna-
tively, we can optimize the sun position and illumination by
comparing the lit terrain model to the captured photo. We
rely on a simple model with a point light (sun) and ambient
occlusion (sky). The optimization process is 1D and con-
verges quickly.

Texture transfer Using our approach, photo collections
can also easily be used to transfer texture information intoa
3D mountain model such as those of Google Earth. Having
found the corresponding camera view, it is enough to apply
a projective texture mapping (including a shadow map test)

to derive which part of the scene was actually visible and
could bene�t from the image content.

Photo navigation Similarly to photo tourism [17], we can
add the photos into the 3D terrain model to enable an intu-
itive navigation. This allows illustrating or preparing hikes,
even when relying on photos of others.

Image Enhancement and Expressive Rendering Using
the underlying 3D terrain model, we can enhance an ex-
isting image or achieve non-photorealistic effects. E.g.,
we can perform informed model-based image dehazing
(Fig.11), enhance certain objects, or even mix the view with
geological data (e.g. using USGS metadata).

Video Matching On a frame-by-frame basis, we can also
optimize video sequences. Which is relatively fast because
the search space is reasonably reduced by assuming a slow
displacement. One could also initialize the search with the
frame that gave the highest response in the �rst search step,
but in practice, we found that unnecessary1.

8. Conclusions and Future Work

We presented a solution to determine the orientation of
mountain photographs by exploiting available digital ele-
vation data. Although this is a very challenging task, we
showed that our approach delivers a robust and precise re-
sult. The accuracy of our solution enabled various inter-
esting applications that we presented in this paper. Our
technical contributions, such as the camera pose estimation
based on edge-to-silhouette matching could �nd application
in other contexts of more general matching problems.

In the future, we want to explore other cues (e.g. the at-
mospherical scattering, aerial perspective) that might help
us in addressing more general environments and improving
the edge detection part for these scenarios [22].

1Refer to supplemental movie for video matching examples.
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Figure 11. Application to image contrast enhancement: the original image (left) is modulated by the diffuse lighting component computed
on the synthetic model (particularly pro�table for distant mountains, whose contrast is affected by atmospheric effects).
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