Based on:

Facial expression recognition based on Local Binary Patterns: A comprehensive study

Caifeng Shan, Shaogang Gong, Peter W. McOwan

Image and Vision Computing 27 (2009) 803–816

Facial expression

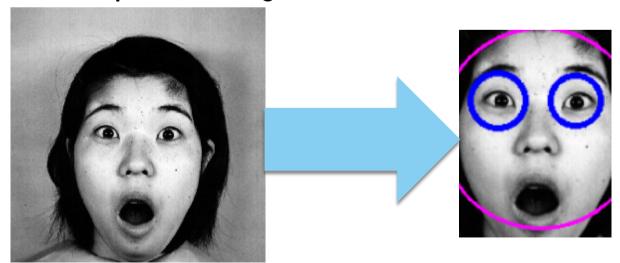
- Facial expression is one of the most immediate and powerful way for a human being to communicate emotions.
- Automatic facial expression analysis can impact applications in areas such as human-machine interaction and data-driven animation.
- High accuracy recognition of facial expression is difficult due to their complexity and variability.

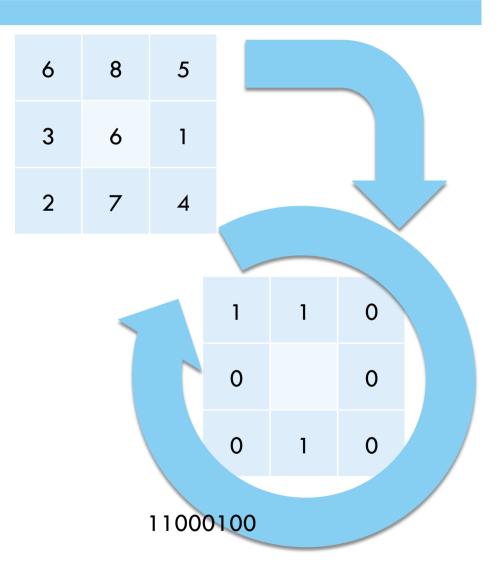
Automatic facial expression recognition

- □ It involves two aspects:
 - Facial representation is to derive a set of feature from original face images, to represent faces.
 Local Binary Patterns are used as appearance features for facial image analysis.
 - Classifier design.
 Support Vector Machine is used to classify facial expressions.

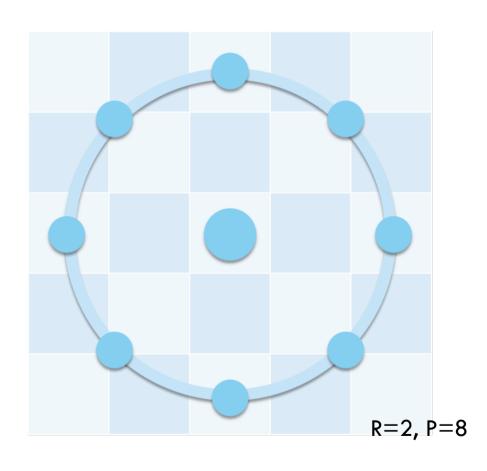
Facial expression data

- □ Focus is on prototypic expression recognition.
- I considered 3-class recognition:
 - Happiness
 - Sadness
 - Surprise


And 4-class recognition, including the neutral


Data preprocessing

- The faces were normalized to a fixed distance between the eyes.
 - Opency Haar Classifier Cascade was used to identify the face and then the eyes in the image.
 - The image was then resized and cropped to a 110x150 pixels image.



LPB operator

- Original LPB operator labels the pixels of an image by thresholding a 3x3 neighborhood of each pixel with the center value and considering the results as a binary number.
- The 256-bin histogram of the LBP labels computed over a region is used as a texture descriptor.

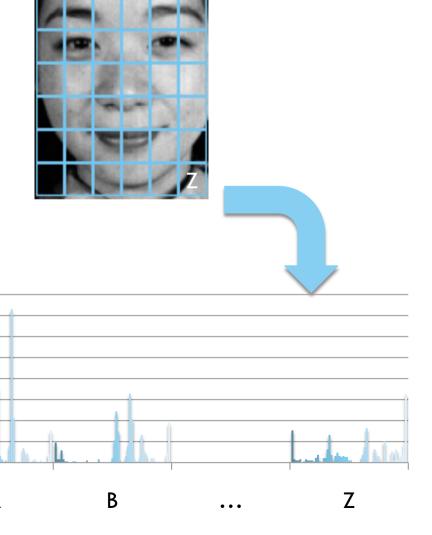
Extended LBP operator

- LBP operator is extended to use neighborhoods of different sizes.
- Using a circular neighborhood and bilinearly interpolating values at non-integer pixel coordinates allow any radius and number of pixels in the neighborhood.

Uniform patterns

- □ LBP_{P,R} operator produces 2^P different output values.
- Since certain bins contains more information, it's possible to use a subset of the 2^P patterns:
 - A uniform pattern is a LBP pattern that contains at most 2 bitwise transitions when the binary string is considered circular, i.e. 00000000, 00001100, 10000011.
- Accumulating the non-uniform patterns in a single bin, produces an operator with only P(P-1)+3 bins.

The histogram


- A histogram of the labeled image is used to capture the information about the distribution of the local micro-patterns.
- To take into account the shape information of faces, these are equally divided into small regions to extract LBP histogram, the resulting histograms are then concatenated to 0.25 form a single histogram.

0.4 0.35

0.3

0.2

0.15 0.1 0.05

Possible optimization

- Some parameter can be optimized for better feature extraction:
 - The LBP operator (P and R)
 - The number of regions
- □ Following the setting of the article, I selected the LBP_{8,2} operator (59-bin) and I divided the 110x150 pixels face image into 18x21 pixel regions.
- Therefore the images were divided into 6x7 regions and represented by the LBP histograms with the length of 2478.

Support Vector Machine

- The basic SVM is a non-probabilistic binary linear classifier that predicts for each input, which of two possible classes the input belongs to.
- □ Given a set of training examples, each marked as belonging to one of two classes, an SVM training algorithm builds a model that assigns new examples into one class or the other.
- SVMs can perform a non-linear classification, mapping their inputs into high-dimensional feature spaces, using a kernel.

Kernels

CvSVM::LINEAR Linear kernel. No mapping is done, linear discrimination (or regression) is done in the original feature space. It is the fastest option.

$$K(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^\mathsf{T} \mathbf{x}_j$$

CvSVM::POLY Polynomial kernel:

$$K(x_i, x_j) = (\gamma x_i^\mathsf{T} x_j + \mathsf{coef}_0)^{\mathsf{degree}}$$

CvSVM::RBF Radial basis function (RBF), a good choice in most cases.

$$K(\mathbf{x}_i, \mathbf{x}_i) = e^{-\gamma \|\mathbf{x}_i - \mathbf{x}_j\|^2}$$

Results

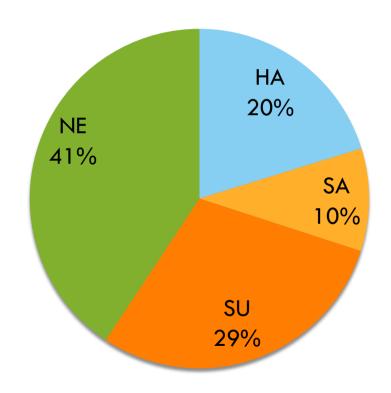
Ran on a MacBook Pro

2.8GHz dual-core Intel Core i7

16GB RAM and SSD

Image database

Cohn Kanade DB


□ Happiness: 176

□ Sadness: 85

□ Surprise: 255

□ Neutral: 354

□ TOT: 870

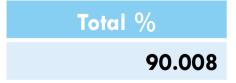
http://www.pitt.edu/~emotion/ck-spread.htm http://www.consortium.ri.cmu.edu/ckagree/

Some tests were done on: http://www.kasrl.org/jaffe.html

Training the SVM

- CvSVM::train_autoTrains an SVM with optimal parameters.
- Training images are chosen randomly.
- Results are the average on r repetitions.

Images subdivision

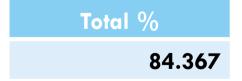


3-class results - default

Region subdivision	R	P	Kernel
6x7	2	8	RBF

%	НА	SA	SU
НА	89.280	0.076	10.644
SA	3.656	63.437	32.906
SU	0.635	0.000	99.364

Average	run time
	13.61s



4-class results - default

Region subdivision	R	P	Kernel
6x7	2	8	RBF

%	NE	НА	SA	SU
NE	95.902	0.586	1.823	1.688
НА	22.439	77.091	0.000	0.470
SA	44.953	0.000	52.859	2.188
SU	16.104	0.005	0.000	83.891

Average	run time
	41.92s

3-class results - linear

Region subdivision	R	Р	Kernel
6x7	2	8	linear

%	НА	SA	SU
НА	99.151	0.023	0.826
SA	0.359	94.969	4.672
SU	0.359	0.307	99.333

Average run time
3.80s

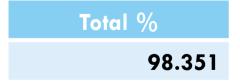
Total % 98.552

4-class results - linear

Region subdivision	R	P	Kernel
6x7	2	8	linear

%	NE	НА	SA	SU
NE	97.797	0.064	1.538	0.602
НА	2.098	97.576	0.000	0.326
SA	19.688	0.000	80.000	0.313
SU	1.839	0.271	0.078	97.813

Average	run time
	7.56s

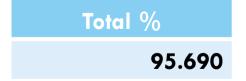


3-class results - polynomial

Region subdivision	R	Р	Kernel
6x7	2	8	polynomial

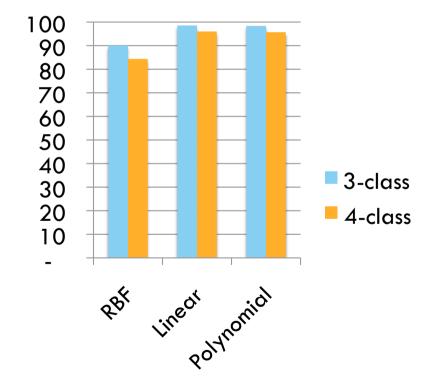
%	НА	SA	SU
НА	99.159	0.045	0.795
SA	0.281	93.359	6.359
SU	0.265	0.276	99.458

Average run time
17.43s

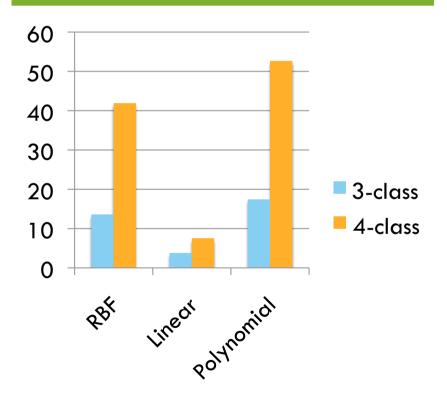


4-class results - polynomial

Region subdivision	R	P	Kernel
6x7	2	8	polynomial

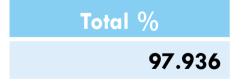

%	NE	НА	SA	SU
NE	97.932	0.0489	1.470	0.549
НА	2.765	96.947	0.000	0.288
SA	21.734	0.000	77.828	0.438
SU	1.922	0.266	0.141	97.672

Average	run time
	52.66s



Kernels

Success rate


Run time

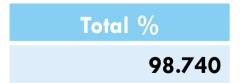
Region subdivision	R	P	Kernel
3x4	2	8	linear

%	НА	SA	SU
НА	98.886	0.515	0.598
SA	1.094	94.125	4.781
SU	0.328	1.120	98.552

Average	run time
	3.28s

Region subdivision	R	P	Kernel
3x4	2	8	linear

%	NE	НА	SA	SU
NE	95.315	0.177	3.305	1.203
НА	2.432	97.189	0.106	0.273
SA	23.750	0.078	75.156	1.016
SU	4.057	0.016	0.120	95.807


Average run time
6.10s

Total %
93.865

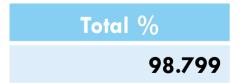
Region subdivision	R	Р	Kernel
5×6	2	8	linear

%	НА	SA	SU
НА	99.144	0.008	0.849
SA	0.047	96.109	3.844
SU	0.370	0.292	99.339

Average	run time
	3.57s

Region subdivision	R	Р	Kernel
5×6	2	8	linear

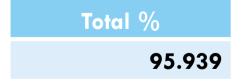
%	NE	НА	SA	SU
NE	97.007	0.038	1.906	1.049
НА	1.174	98.333	0.000	0.492
SA	22.032	0.000	77.797	0.172
SU	2.495	0.208	0.245	97.052


Average run time
6.85s

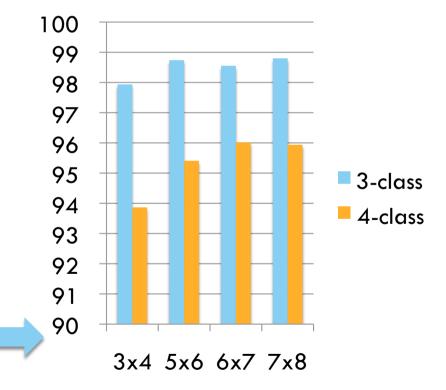
Total % 95.408

Region subdivision	R	P	Kernel
7x8	2	8	linear

%	НА	SA	SU
НА	99.182	0.083	0.735
SA	0.047	96.000	3.953
SU	0.250	0.281	99.469


Average	run time
	4.15s

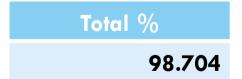
Region subdivision	R	P	Kernel
7x8	2	8	linear


%	NE	НА	SA	SU
NE	97.391	0.008	1.594	1.008
НА	1.205	98.333	0.008	0.455
SA	21.172	0.000	78.641	0.188
SU	1.661	0.214	0.078	98.047

Average	run time
	8.57s

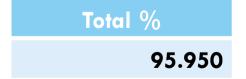
Regions

Success rate


Run time

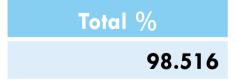
Region subdivision	R	P	Kernel
6x7	1	8	linear

%	НА	SA	SU
НА	99.212	0.000	0.788
SA	0.172	95.547	4.281
SU	0.385	0.208	99.406


Average	run time
	3.86s

Region subdivision	R	P	Kernel
6x7	1	8	linear

%	NE	НА	SA	SU
NE	97.759	0.019	1.797	0.425
НА	1.689	97.977	0.000	0.333
SA	21.188	0.000	78.188	0.625
SU	1.672	0.318	0.042	97.969

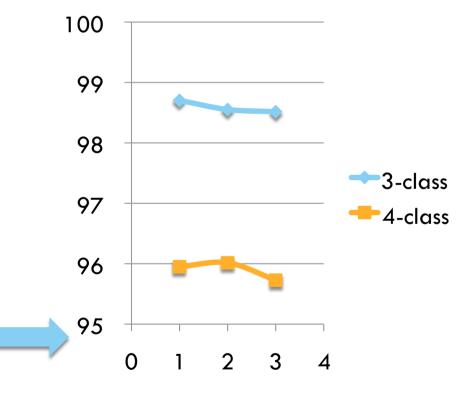

Average	run time
	7.82s

Region subdivision	R	P	Kernel
6x7	3	8	linear

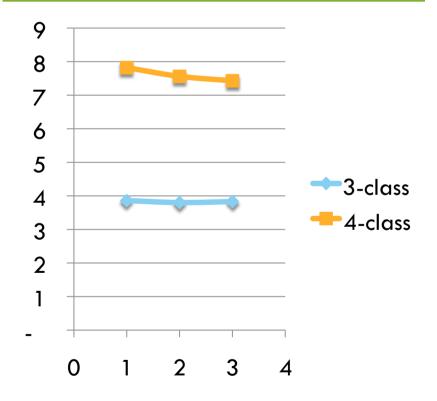
%	НА	SA	SU
НА	99.129	0.068	0.803
SA	0.109	94.406	5.484
SU	0.094	0.443	99.464

Average	run time
	3.83s

Region subdivision	R	P	Kernel
6x7	3	8	linear


%	NE	НА	SA	SU
NE	97.635	0.105	1.248	1.011
НА	2.833	96.659	0.000	0.508
SA	20.375	0.000	78.719	0.906
SU	1.719	0.016	0.151	98.115

Average	run time
	7.43s



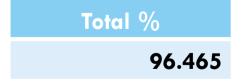
Radius

Success rate

Run time

Region subdivision	R	P	Kernel
6x7	2	6	linear

%	НА	SA	SU
НА	99.492	0.000	0.508
SA	0.234	95.328	4.438
SU	0.432	0.620	98.948


Average run time
2.81s

Total %
98.536

Region subdivision	R	P	Kernel
6x7	2	6	linear

%	NE	НА	SA	SU
NE	97.872	0.041	1.421	0.665
HA	1.288	98.530	0.000	0.182
SA	16.719	0.000	82.844	0.438
SU	1.844	0.172	0.349	97.635


Average	run time
	5.44s

Region subdivision	R	P	Kernel
6x7	2	12	linear

%	НА	SA	SU
НА	99.121	0.159	0.720
SA	0.609	95.344	4.047
SU	0.599	0.385	99.016

Average	run time
	8.96s

Region subdivision	R	P	Kernel
6x7	2	12	linear

%	NE	НА	SA	SU
NE	97.955	0.053	1.305	0.688
HA	2.152	97.545	0.000	0.303
SA	20.089	0.000	78.891	0.625
SU	2.089	0.188	0.083	97.641

Average	run time
	7.87s

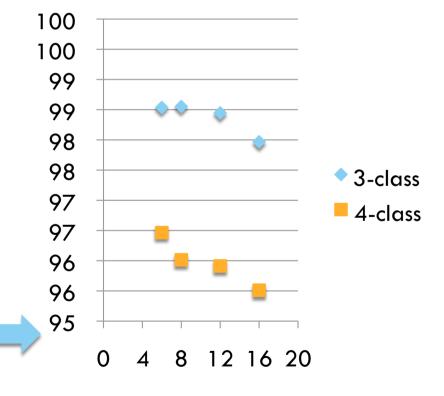
Region subdivision	R	P	Kernel
6x7	2	16	linear

%	НА	SA	SU
НА	98.811	0.189	1.000
SA	0.719	93.578	5.703
SU	0.583	0.563	98.854

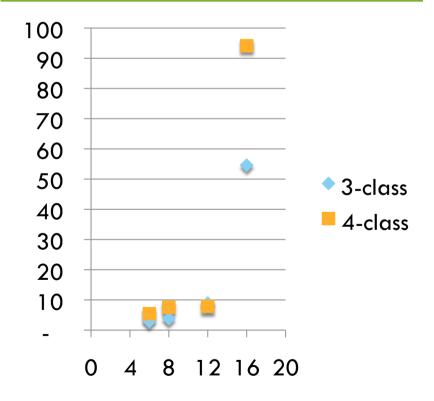
Average run time 54.61s

Total % 97.969

Region subdivision	R	P	Kernel
6x7	2	16	linear


%	NE	НА	SA	SU
NE	97.594	0.079	1.635	0.692
НА	1.939	97.348	0.030	0.682
SA	22.094	0.015	77.141	0.750
SU	2.167	0.104	0.240	97.490

Average	run time
	94.14s



Points

Success rate

Run time

The End

Thank you