
Università degli studi di Brescia
Dipartimento di ingegneria dell’informazione

Image processing and visualization course

Professors: Nicola Adami and Sergio Benini

Automatic blurred/non-blurred regions identification
and image matting

Alessandro Gnutti
Andrea Sanzogni

Overview

 First part: automatic approach for blur/non-blur
region identification

• “Automatic blur region segmentation approach using image
matting”. Jufeng Zhao, Huajun Feng, Zhihai Xu, Qi Li and
Xiaoping Tao

 Second part: estimate of opacity value for each pixel
in the image

• “An iterative optimization approach for unified image
segmentation and matting”. Jue Wang and Micheal F. Cohen

Blur region detection

 We will quantify three blur features for every patch
in the image:

• Gradient histogram span

• Local mean square error map

• Maximum saturation

 At last we will combine the three features in order to
create a more correct blur/non-blur mask

Gradient histogram span

 Note: the edge of blurred image is not as sharp as the
edge in the non-blurred image
• That means that the gradient of blurred image is lower

 Gradient distribution:
• Blur image: small variance

• Non-blur image: big variance and presence of heavy-tail compared
with the former

 Moreover: the statistics of gradient response in natural
images usually follow a mix-gaussian distribution

Gradient histogram span

Gradient distribution non-blur region

Gradient distribution blur region

Gradient histogram span

 A mixture of two-component Gaussian model is
used to approximate the distribution:

 μ1 = μ2 = 0

 a1 , a2 are constants

 σ2 > σ1

2

2

2

2
22

1

2

1
1

2
exp

2
exp

 x
a

x
aG

Gradient histogram span

 The gaussian component with larger variance is
mainly responsible for causing the heavy-tail in the
original distribution of the gradient

 For this reason we set σ2 as a blur factor

21 q

Expectation maximization

 “The Expectation Maximization algorithm estimates
the parameters of the multivariate probability
density function in the form of a Gaussian mixture
distribution with a specified number of mixtures”

 We have exploited the openCV function EM

 Input: gradient of image, number of components of
the gaussian model (=2)

 Output: list of parameters
• Means

• Variances

• Weights

Local mean square error map

 We define LMSE as the sum of all pixel’s mean
square in the patch, expressed by:

 It’s a measure of the variance between the pixel and

the mean value:
• Large values near sharp edge

• Small values in the blur regions

n

i

ip meanx
n

V
1

21

Local mean square error map

 We consider the relative local to global variance as
our blur factor. Let be V0 the mean square error of
the entire image, so:

0

0

2
V

VV
q

p

Maximum saturation

 It’s observed that blurred pixels tend to have less
vivid colors than non-blurred pixels

 For this reason color information is also useful for
blur detection

 We compute the saturation color for every pixel as:

 BGR
BGR

S p ,,min
3

1

Maximum saturation

 Then we find the maximum value for every patch

 At last we compare it with the maximum saturation
value of the whole image (S0), in order to obtain the
third blur factor:

 0

0

3
max

maxmax

S

SS
q

p

Blur/non-blur mask

 What do we do?
• The image is partioned to patches size of 20x20

• We set different thresholds Tb and Td for each blur measure

• If qi < Tb the patch is marked as blurred with white color

• If qi > Td the patch is marked as non-blurred region with black color

 Results:
• There can be some detection errors

• Not all blur regions can be picked up

 Reasons: for example color information between blur
and non-blur regions is similar

Blur/non-blur mask

 Hence we combine the three features to improve
accuracy

 That is:

• If all of the three features regard a patch blurred, then this
patch is marked blurred

• If all of the three features regard a patch non-blurred, then this
patch is marked non-blurred

• At the contrary patch is not marked

Results

 We show obtained results for three images (blur regions
and non-blur regions)

 For everyone we display also the global trimap

 It’s important to highlight that we have to set different
threshold Tb and Td for every feature and for every image

 Let be min_val(qi) the minimum value of all features qi
of the patches, and max_val(qi) the maximum value of
all features qi of the patches:
• Tb = min_val + x % of (max_val – min_val)
• Td = max_val - y % of (max_val – min_val)

Test 1

Test 1: Gradient histogram span

Blur regions:

Tb = min_val +
9% of range

Test 1: Gradient histogram span

Non-blur regions:

Td = max_val -
50% of range

Test 1: Local mean square error map

Blur regions:

Tb = min_val +
12.5% of range

Test 1: Local mean square error map

Non-blur regions:

Td = max_val -
80% of range

Test 1: Maximum saturation

Blur regions:

Tb = min_val +
17% of range

Test 1: Maximum saturation

Non-blur regions:

Td = max_val -
62.5% of range

Test 1: trimap

Test 2

Test 2: Gradient histogram span

Blur regions:

Tb = min_val +
8.5% of range

Test 2: Gradient histogram span

Non-blur regions:

Td = max_val -
50% of range

Test 2: Local mean square error map

Blur regions:

Tb = min_val +
12.5% of range

Test 2: Local mean square error map

Non-blur regions:

Td = max_val -
76% of range

Test 2: Maximum saturation

Blur regions:

Tb = min_val +
1% of range

Test 2: Maximum saturation

Non-blur regions:

Td = max_val -
66% of range

Test 2: trimap

Test 3

Test 3: Gradient histogram span

Blur regions:

Tb = min_val +
6% of range

Test 3: Gradient histogram span

Non-blur regions:

Td = max_val -
62.5% of range

Test 3: Local mean square error map

Blur regions:

Tb = min_val +
14% of range

Test 3: Local mean square error map

Non-blur regions:

Td = max_val -
66% of range

Test 3: Maximum saturation

Blur regions:

Tb = min_val +
50% of range

Test 3: Maximum saturation

Non-blur regions:

Td = max_val -
1% of range

Test 3: trimap

Remarks

 Starting from results we can observe that:

• Method 1 and method 2 work efficiently

• Method 3 presents some imperfection more

• Trimaps allow to remove all blur/non-blur regions identified
wrongly

Possible reasons:
• Color information similar between blur and non-blur regions

• Choice of thresholds

 All of these observations agree in principle with that
one of the original paper

Image matting

 Separation of a foreground object from the background

 Idea: it’s assumed that each pixel x = (i, j) in an image I
(x) is a linear combination of a foreground color and a
background color. In particular:

 αx is the opacity value for each pixel, ranged from 0 to 1

 xBxFxI xx 1

Overview

 In the original paper, Wang proposed an iterative
optimization algorithm to generate a matte, starting from
a few user specified foreground and background pixels

 In our work, blur and non-blur regions substitute those
marked by user

 The goal of this method is to determine, for each pixel p:
• a foreground color, F

• a background color, B

• an alpha value between 0 to 1, α

 and to reduce the uncertainty u (also between 0 and 1) of
these values

Overview

 Input:

• Mixed color of each pixel, C

• Few foreground and background pixels (obtained from first
part)

 Marked pixels are characterized by:

• Uncertainty of 0

• Alpha value of 0 (background) or 1 (foreground)

• Their foreground or background values (C)

 All other pixels are initialized to have α = 0.5 and
u = 1

Overview

 We divide pixels in three groups:
• Uc: pixels whose alpha values have been estimated in previous

iterations and uncertainty is equal to zero

• Ue: pixels whose alpha values have been estimated in previous
iterations and uncertainty is not equal to zero

• Un: pixels not yet considered

 The approach proceeds iteratively:
• Scan each pixel of the image:

 If p € (Un or Ue) and it’s nearby to ones in (Uc or Ue) (within 15
pixels) then it’s added to Ue and (F, B, α and u) are estimated or
re-estimated

• The algorithm stops when Un is null and the sum of all pixel
uncertainties cannot be reduced anymore

Overview

Pixels that
will be

analysed

Algorithm: local sampling area

 We discretize the possible alpha value to 25 levels
between 0 and 1: αk, k = 1, 2, …, 25

 In order to estimate αp we sample a group of
previously estimated foreground or background
colors from the neighborhood of the node p (local
neighborhood area with radius r = 20 around p)

 In order to be a vaild…
• …foreground sample then αs > αp

• …background sample then αs < αp

Algorithm: weights

 The set of valid samples, pi, is then weighted in this way:

 Where:
• s (p, pi) is the spatial distance between the two points

• σw = r/2

• x represents the foreground sample (x = F) or the background
sample (x = B)

 We consider the N = 12 largest weights found in the local
area (both for foreground and background pixels)

2

2
,

exp1
w

i
i

x

i

pps
pu

Algorithm: global sampling area

 Problem: it’s possible that there aren’t N valid
foreground and background samples for a pixel

 Solution used in the paper:

 GrubCut system proposed by Rother , Kolmogorov and Blake

 Idea: train a Gaussian Mixture Model on the user specified
foreground and background pixels and then to assign each
marked pixel to a single Gaussian in the GMM

 Random selection of pixel by each gaussian

 We have not implemented this method

Algorithm: global sampling area

 Initial implemented solution:

• We save all the positions of foreground pixels marked at the
beginning of the process (blur/non-blur mask)

• Let be:

 X: number of foreground samples found in the local area

 f_p: array containing the positions of foreground pixels marked
at the beginning of the algorithm

 L: length of f_p

• So we extract N-X random numbers between 1 and L,
indicating locations of foreground pixels to consider

• Same method is applied to get background samples

Algorithm: global sampling area

 Problem: extracted samples are too distant from
analysed pixel…

 …following operations don’t work accurately

 Conclusive solution:
 If a pixel is surrounded only by foreground samples, then that

pixel is setted as foreground (following steps will be not
considered until update operation)

 Similar procedure for background samples

Overall view

All pixels
setted as

background
pixels

These pixels
are marked
in accord to

the
following
procedure

Algorithm: probability histogram of alpha levels

 So, given the foreground and background samples and
corresponding weights, we compute the likelihood of
each alpha level αk:

 Where:
• Fi are foreground sample colors

• Bi are background sample colors

• Ci is the actual color of the examinated pixel p

• dc is the euclidean distance in RGB space (distance between colors)

• σd
k is the covariance

N

i

N

j
k

d

j

k

i

k

pcB

j

F

ik

BFCd

N
pL

1 1
2

2

2
2

1,
exp

1

Algorithm: covariance

 The covariance is computed as:

 Where:

• σF is the distance covariance among foreground samples

• σB is the distance covariance among background samples

 B

k

F

kk

d 1

Algorithm: distance covariance

 Let Xk with k = 1,..,N the values of x-ground sample

 First, compute elements:

 And then the matrix:

NkjXXa kjkj ,...,2,1, ,

matrix distance theofmean grand theis

meancolumn th -k theis

mean rowth -j theis

..

.

.

....,,

a

a

a

aaaaA

k

j

kjkjkj

Algorithm: distance covariance

 Finally, the distance covariance is computed by:

N

kj

kjNx A
N

XXdCov
1,

2

,2

1
,

Algorithm: update

 Alfa:

 If αp = 1:

• FP = CP , BP = 0 and uP = 0

 If αp = 0:

• BP = CP , FP = 0 and uP = 0

 pLk
k

k
k

p maxarg,
24

1

Algorithm: update

 Else:

 Finally:

 Where:

• ωF is the weigth for the foreground sample

• ωB is the weigth for the background sample

2

,
1minarg, jpipp

BF
pp BFCBF

ji

 BF

pu 1

Algorithm: end

 The algorithm halts when Un is null (each pixel has
been analyzed) and the total uncertainty of the whole
matte cannot be reduced any further

…Now, starting from trimap of the three analyzed
images, let’s show opacity (alpha) map for each one…

Test 1: extracted matte

Test 1: foreground

Test 2: extracted matte

Test 2: foreground

Test 3: extracted matte

Test 3: foreground

Remarks

 Results are not fully correct

 However we expected this kind of results, indeed:
• Original paper has implemented a smooth operation we

have not considered

• Slight errors in the trimap…

Some pixels are wrongly
considered foreground samples

Effectiveness measures

 Now we want to show numerical results about
implemented work

 For this reason we have:
• searched single thresholds to apply to each image in order to obtain

the best trimap

• effected post-processing operations

• computed algorithm to a set of 10 images

 Then we have evaluated the efficiency by means of three
parameters:
• accuracy

• precision

• recall

Calculating Accuracy, Precision and Recall

a = properly observed foreground
b = wrongly observed background
c = wrongly observed foreground
d = properly observed foreground

Calculating Accuracy, Precision and Recall

 Accuracy:

 Precision:

 Recall:

dcba

da

ca

a

 db

d

ba

a

 dc

d

Foreground Background

Background Foreground

Ground truth

 In order to obtain the ground truth we have
manually selected and segmentd each image into
20x20 patches and we have marked them as
foreground or background

 We have created an easy script with Matlab in order
to simplify this operation

Ground truth

Parameters

 Thresholds:

 Gradient histogram span:

 Local mean square error:

 Maximum saturation:

uPd

uPb

%60

%5

uPd

uPb

%12

%35

uPd

uPb

%60

%10

u = 0.02

Parameters

 In order to obtain a better trimap we’ve applied a change

 We have assigned to each patch a counter:
 if a patch is marked as foreground by one of the three features then

counter is increased by one

 if a patch is marked as background by one of the three features then
counter is rediced by one

 When a patch’s been evaluated by all the three features:
 if counter = 1 then α = 2/3 and u = 2/3

 if counter = 2 then α = 2/3 and u = 1/3

 if counter = 3 then α = 1 and u = 0

 if counter = -3 then α = 0 and u = 0

 else α = 1/2 and u = 1

Post-processing

 Furthermore we have operated some enhancement
on the extracted matte, in order to obtain a more
truthful result

 In particular we have applied on the extracted
matte:

 A 3x3 mean filter

 Segmentation

 The morphological operation closing

 The morphological operation opening

Post-processing

 Original extracted matte

Mean filter

 Uniforming the opacity map

Segmentation

 Separating the foreground from the background

Closure

 Removing of “holes” from the foreground

Opening

 Removing small objects from background

Final results

60,00%

65,00%

70,00%

75,00%

80,00%

85,00%

90,00%

95,00%

100,00%

Analysis of the test

Accuracy Precision (F) Recall (F)

Final results

60,00%

65,00%

70,00%

75,00%

80,00%

85,00%

90,00%

95,00%

100,00%

Analysis of the test

Accuracy Precision (B) Recall (B)

Final results

 Here we show the overall data of accuracy -precision
- recall considering the combination of all the
images:

Accuracy

Precision
Of

Foreground

Recall
Of

Foreground

Precision
Of

Background

Recall
Of

Background

90% 84,5% 87,5% 93% 91,5%

