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Overview 

 First part: automatic approach for blur/non-blur 
region identification 

• “Automatic blur region segmentation approach using image 
matting”. Jufeng Zhao, Huajun Feng, Zhihai Xu, Qi Li and 
Xiaoping Tao 

 

 Second part: estimate of opacity value for each pixel 
in the image 

• “An iterative optimization approach for unified image 
segmentation and matting”. Jue Wang and Micheal F. Cohen 

 



Blur region detection 

 We will quantify three blur features for every patch 
in the image: 

•  Gradient histogram span 

•  Local mean square error map 

•  Maximum saturation 

 

 At last we will combine the three features in order to 
create a more correct blur/non-blur mask 

 



Gradient histogram span 

  Note: the edge of blurred image is not as sharp as the 
edge in the non-blurred image 
• That means that the gradient of blurred image is lower 

 

  Gradient distribution: 
• Blur image: small variance 

• Non-blur image: big variance and presence of  heavy-tail compared 
with the former 

 

  Moreover: the statistics of gradient response in natural 
images usually follow a mix-gaussian distribution 



Gradient histogram span 



Gradient distribution non-blur region 



Gradient distribution blur region 



Gradient histogram span 

 A mixture of two-component Gaussian model is 
used to approximate the distribution: 

 

 

 

 

  μ1 = μ2 = 0 

  a1 , a2 are constants 

  σ2  > σ1 
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Gradient histogram span 

 The gaussian component with larger variance is 
mainly responsible for causing the heavy-tail in the 
original distribution of the gradient 

 

 For this reason we set σ2 as a blur factor 
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Expectation maximization 

 “The Expectation Maximization algorithm estimates 
the parameters of the multivariate probability 
density function in the form of a Gaussian mixture 
distribution with a specified number of mixtures” 

 We have exploited the openCV function EM  

 Input: gradient of image, number of components of 
the gaussian model (=2) 

 Output: list of parameters 
• Means 

• Variances 

• Weights 

 



Local mean square error map 

 We define LMSE as the sum of all pixel’s mean 
square in the patch, expressed by: 

 

 

 

 It’s a measure of the variance between the pixel and 

the mean value: 
• Large values near sharp edge 

• Small  values in the blur regions 
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Local mean square error map 

 We consider the relative local to global variance as 
our blur factor. Let be V0 the mean square error of 
the entire image, so: 
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Maximum saturation 

 It’s observed that blurred pixels tend to have less 
vivid colors than non-blurred pixels 

 For this reason color information is also useful for 
blur detection 

 We compute the saturation color for every pixel as: 
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Maximum saturation 

 Then we find the maximum value for every patch 

 

 At last we compare it with the maximum saturation 
value of the whole image (S0), in order to obtain the 
third blur factor: 
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Blur/non-blur mask 

  What do we do? 
• The image is partioned to patches size of 20x20 

• We set different thresholds Tb and Td for each blur measure 

• If qi < Tb the patch is marked as blurred with white color 

• If qi > Td the patch is marked as non-blurred region with black color 

 

  Results: 
• There can be some detection errors 

• Not all blur regions can be picked up 

 

  Reasons: for example color information between blur 
and non-blur regions is similar 



Blur/non-blur mask 

 Hence we combine the three features to improve 
accuracy 

 

 That is: 

• If all of the three features regard a patch blurred, then this 
patch is marked blurred 

• If all of the three features regard a patch non-blurred, then this 
patch is marked non-blurred 

• At the contrary patch is not marked 

 

 



Results 

  We show obtained results for three images (blur regions 
and non-blur regions) 
 

  For everyone we display also the global trimap 
 

  It’s important to highlight that we have to set different 
threshold Tb and Td for every feature and for every image 
 

  Let be min_val(qi) the minimum value of all features qi 
of the patches, and max_val(qi) the maximum value of 
all features qi of the patches: 
• Tb = min_val + x % of (max_val – min_val) 
• Td = max_val - y % of (max_val – min_val) 

 



Test 1 



Test 1: Gradient histogram span  

         

Blur regions: 
  

Tb = min_val +  
9% of range 



Test 1: Gradient histogram span  

Non-blur regions: 
  

Td = max_val -  
50% of range 



Test 1: Local mean square error map  

Blur regions: 
  

Tb = min_val +  
12.5% of range 



Test 1: Local mean square error map  

Non-blur regions: 
  

Td = max_val -  
80% of range 



Test 1: Maximum saturation 

Blur regions: 
  

Tb = min_val +  
17% of range 



Test 1: Maximum saturation 

Non-blur regions: 
  

Td = max_val -  
62.5% of range 



Test 1: trimap 



Test 2 



Test 2: Gradient histogram span  

Blur regions: 
  

Tb = min_val +  
8.5% of range 



Test 2: Gradient histogram span  

Non-blur regions: 
  

Td = max_val -  
50% of range 



Test 2: Local mean square error map  

Blur regions: 
  

Tb = min_val +  
12.5% of range 



Test 2: Local mean square error map  

Non-blur regions: 
  

Td = max_val -  
76% of range 



Test 2: Maximum saturation 

Blur regions: 
  

Tb = min_val +  
1% of range 



Test 2: Maximum saturation 

Non-blur regions: 
  

Td = max_val -  
66% of range 



Test 2: trimap 



Test 3 



Test 3: Gradient histogram span  

Blur regions: 
  

Tb = min_val +  
6% of range 



Test 3: Gradient histogram span  

Non-blur regions: 
  

Td = max_val -  
62.5% of range 



Test 3: Local mean square error map  

Blur regions: 
  

Tb = min_val +  
14% of range 



Test 3: Local mean square error map  

Non-blur regions: 
  

Td = max_val -  
66% of range 



Test 3: Maximum saturation 

Blur regions: 
  

Tb = min_val +  
50% of range 



Test 3: Maximum saturation 

Non-blur regions: 
  

Td = max_val -  
1% of range 



Test 3: trimap 



Remarks 

 Starting from results we can observe that: 

• Method 1 and method 2 work efficiently 

• Method 3 presents some imperfection more 

• Trimaps allow to remove all blur/non-blur regions identified 
wrongly   

Possible reasons: 
• Color information similar between blur and non-blur regions 

• Choice of thresholds 

 All of these observations agree in principle with that 
one of the original paper 

 



Image matting 

  Separation of a foreground object from the background 

 

  Idea: it’s assumed that each pixel x = (i, j) in an image I 
(x) is a linear combination of a foreground color and a 
background color. In particular: 

 

 

 

 

  αx is the opacity value for each pixel, ranged from 0 to 1 
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Overview 

  In the original paper, Wang proposed an iterative 
optimization algorithm to generate a matte, starting from 
a few user specified foreground and background pixels 

  In our work, blur and non-blur regions substitute those 
marked by user 

  The goal of this method is to determine, for each pixel p: 
• a foreground color, F 

• a background color, B 

• an alpha value between 0 to 1, α 

 and to reduce the uncertainty u (also between 0 and 1) of 
these values 



Overview 

 Input: 

• Mixed color of each pixel, C 

• Few foreground and background pixels (obtained from first 
part) 

 Marked pixels are characterized by: 

• Uncertainty of 0 

• Alpha value of 0 (background) or 1 (foreground) 

• Their foreground or background values (C) 

 All other pixels are initialized to have α = 0.5 and     
u = 1 



Overview 

 We divide pixels in three groups: 
• Uc: pixels whose alpha values have been estimated in previous 

iterations and uncertainty is equal to zero 

• Ue: pixels whose alpha values have been estimated in previous 
iterations and uncertainty is not equal to zero 

• Un: pixels not yet considered 

 The approach proceeds iteratively: 
• Scan each pixel of the image: 

 If p € (Un or Ue) and it’s nearby to ones in (Uc or Ue) (within 15 
pixels) then it’s added to Ue and (F, B, α and u) are estimated or 
re-estimated 

• The algorithm stops when Un is null and the sum of  all pixel 
uncertainties cannot be reduced anymore  



Overview 

Pixels that 
will be 

analysed 



Algorithm: local sampling area 

 We discretize the possible alpha value to 25 levels 
between 0 and 1: αk, k = 1, 2, …, 25 

 

 In order to estimate αp we sample a group of 
previously estimated foreground or background 
colors from the neighborhood of the node p (local 
neighborhood area with radius r = 20 around p) 

 

 In order to be a vaild… 
• …foreground sample then αs > αp 

• …background sample then αs < αp 

 



Algorithm: weights 

  The set of valid samples, pi, is then weighted in this way: 

 

 

 

  Where: 
• s (p, pi) is the spatial distance between the two points 

• σw = r/2 

• x represents the foreground sample (x = F) or the background 
sample (x = B) 

  We consider the N = 12 largest weights found in the local 
area (both for foreground and background pixels) 
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Algorithm: global sampling area 

 Problem: it’s possible that there aren’t N valid 
foreground and background samples for a pixel 

 Solution used in the paper: 

 GrubCut system proposed by Rother , Kolmogorov and Blake 

 Idea: train a Gaussian Mixture Model on the user specified 
foreground and background pixels and then to assign each 
marked pixel to a single Gaussian in the GMM 

 Random selection of pixel by each gaussian 

 We have not implemented this method 



Algorithm: global sampling area 

  Initial implemented solution: 

• We save all the positions of foreground pixels marked at the 
beginning of the process (blur/non-blur mask) 

• Let be: 

 X: number of foreground samples found in the local area 

 f_p: array containing the positions of foreground pixels marked 
at the beginning of the algorithm 

 L: length of f_p 

• So we extract N-X random numbers between 1 and L, 
indicating locations of foreground pixels to consider 

• Same method is applied to get background samples 

 



Algorithm: global sampling area 

 Problem: extracted samples are too distant from 
analysed pixel… 

 …following operations don’t work accurately 

 

 Conclusive solution: 
 If a pixel is surrounded only by foreground samples, then that 

pixel is setted as foreground (following steps will be not 
considered until update operation) 

 Similar procedure for background samples 



Overall view 

All pixels 
setted as 

background 
pixels  

These pixels 
are marked 
in accord to 

the 
following 
procedure 



Algorithm: probability histogram of alpha levels 

  So, given the foreground and background samples and 
corresponding weights, we compute the likelihood of 
each alpha level αk: 

 

 

 

  Where: 
• Fi are foreground sample colors 

• Bi are background sample colors 

• Ci is the actual color of the examinated pixel p 

• dc is the euclidean distance in RGB space (distance between colors) 

• σd
k is the covariance 
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Algorithm: covariance 

 The covariance is computed as: 

 

 

 

 Where: 

• σF is the distance covariance among foreground samples 

• σB is the distance covariance among background samples 
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Algorithm: distance covariance 

 Let Xk with k = 1,..,N the values of x-ground sample 

 First, compute elements: 

 

 

 And then the matrix: 
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Algorithm: distance covariance 

 Finally, the distance covariance is computed by: 
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Algorithm: update  

 Alfa: 

 

 

 

 If αp = 1: 

• FP = CP , BP = 0 and uP = 0 

 

 If αp = 0: 

• BP = CP , FP = 0 and uP = 0 

 

   pLk
k

k
k

p maxarg,
24

1







Algorithm: update  

 Else: 

 

 

 Finally: 

 

 

 Where: 

• ωF is the weigth for the foreground sample 

• ωB is the weigth for the background sample 
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Algorithm: end 

 The algorithm halts when Un is null (each pixel has 
been analyzed) and the total uncertainty of the whole 
matte cannot be reduced any further 

 

…Now, starting from trimap of the three analyzed 
images, let’s show opacity (alpha) map for each one… 



Test 1: extracted matte 



Test 1: foreground 



Test 2: extracted matte 



Test 2: foreground 



Test 3: extracted matte 



Test 3: foreground 



Remarks 

 Results are not fully correct 

 However we expected this kind of results, indeed: 
• Original paper has implemented a smooth operation we 

have not considered 

• Slight errors in the trimap… 

 

Some pixels are wrongly 
considered foreground samples 



Effectiveness measures 

  Now we want to show numerical results about 
implemented work 

  For this reason we have: 
• searched single thresholds to apply to each image in order to obtain 

the best trimap  

• effected post-processing operations 

• computed algorithm to a set of 10 images 

  Then we have evaluated the efficiency by means of three 
parameters: 
• accuracy 

• precision 

• recall 



Calculating Accuracy, Precision and Recall 

a = properly observed foreground 
b = wrongly observed background 
c = wrongly observed foreground 
d = properly observed foreground 



Calculating Accuracy, Precision and Recall 

 Accuracy: 

 

 

 Precision: 

 

 

 Recall: 
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Ground truth 

 In order to obtain the ground truth we have 
manually selected and segmentd each image into 
20x20 patches and we have marked them as 
foreground or background 

 

 We have created an easy script with Matlab in order 
to simplify this operation  



Ground truth 



Parameters 

 Thresholds: 

 
 Gradient histogram span: 

 

 

 

 Local mean square error: 

 

 

 

 Maximum saturation: 
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%60

%10

u = 0.02 



Parameters 

 In order to obtain a better trimap we’ve applied a change 

  We have assigned to each patch a counter: 
 if a patch is marked as foreground by one of the three features then 

counter is increased by one 

 if a patch is marked as background by one of the three features then 
counter is rediced by one 

  When a patch’s been evaluated by all the three features: 
 if counter = 1 then α = 2/3 and u = 2/3 

 if counter = 2 then α = 2/3 and u = 1/3 

 if counter = 3 then α = 1 and u = 0 

 if counter = -3 then α = 0 and u = 0 

 else α = 1/2 and u = 1 

 

 



Post-processing 

 Furthermore we have operated some enhancement 
on the extracted matte, in order to obtain a more 
truthful result 

 In particular we have applied on the extracted 
matte: 

 A 3x3 mean filter 

 Segmentation 

 The morphological operation closing 

 The morphological operation opening 

 

 



Post-processing 

 Original extracted matte  



Mean filter 

 Uniforming the opacity map 



Segmentation 

 Separating the foreground from the background 



Closure 

 Removing of “holes” from the foreground 



Opening 

 Removing small objects from background 



Final results 

60,00% 

65,00% 

70,00% 

75,00% 

80,00% 

85,00% 

90,00% 

95,00% 

100,00% 

Analysis of the test 

Accuracy Precision (F) Recall (F) 



Final results 

60,00% 

65,00% 

70,00% 

75,00% 

80,00% 

85,00% 

90,00% 

95,00% 

100,00% 

Analysis of the test 

Accuracy Precision (B) Recall (B) 



Final results 

 Here we show the overall data of accuracy -precision 
- recall considering the combination of all the 
images: 

 
Accuracy 

Precision 
Of 

Foreground  

Recall 
Of 

Foreground 

Precision  
Of 

Background 

Recall 
Of 

Background 

90% 84,5% 87,5% 93% 91,5% 


