Università degli studi di Brescia
 Dipartimento di ingegneria dell'informazione
 Image processing and visualization course Professors: Nicola Adami and Sergio Benini

Automatic blurred/non-blurred regions identification and image matting

Alessandro Gnutti Andrea Sanzogni

Overview

\square First part: automatic approach for blur/non-blur region identification
"Automatic blur region segmentation approach using image matting". Jufeng Zhao, Huajun Feng, Zhihai Xu, Qi Li and Xiaoping Tao
\square Second part: estimate of opacity value for each pixel in the image
"An iterative optimization approach for unified image segmentation and matting". Jue Wang and Micheal F. Cohen

Blur region detection

\square We will quantify three blur features for every patch in the image:

Gradient histogram span
Local mean square error map

- Maximum saturation
\square At last we will combine the three features in order to create a more correct blur/non-blur mask

Gradient histogram span

\square Note: the edge of blurred image is not as sharp as the edge in the non-blurred image

That means that the gradient of blurred image is lower
\square Gradient distribution:

- Blur image: small variance
- Non-blur image: big variance and presence of heavy-tail compared with the former
\square Moreover: the statistics of gradient response in natural images usually follow a mix-gaussian distribution

Gradient histogram span (1)

Gradient distribution non-blur region

 (1)

Gradient distribution blur region

Gradient histogram span

\square A mixture of two-component Gaussian model is used to approximate the distribution:

$$
G=a_{1} \exp \left(\frac{-\left(x-\mu_{1}\right)^{2}}{2 \sigma_{1}^{2}}\right)+a_{2} \exp \left(\frac{-\left(x-\mu_{2}\right)^{2}}{2 \sigma_{2}^{2}}\right)
$$

$>\mu_{1}=\mu_{2}=0$
$>\mathrm{a}_{1}, \mathrm{a}_{2}$ are constants
$>\sigma_{2}>\sigma_{1}$

Gradient histogram span

\square The gaussian component with larger variance is mainly responsible for causing the heavy-tail in the original distribution of the gradient
\square For this reason we set σ_{2} as a blur factor

$$
q_{1}=\sigma_{2}
$$

Expectation maximization

\square "The Expectation Maximization algorithm estimates the parameters of the multivariate probability density function in the form of a Gaussian mixture distribution with a specified number of mixtures"
\square We have exploited the openCV function $E M$
\square Input: gradient of image, number of components of the gaussian model (=2)
\square Output: list of parameters
Means
Variances
Weights

Local mean square error map

\square We define LMSE as the sum of all pixel's mean square in the patch, expressed by:

$$
V_{p}=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\text { mean }\right)^{2}}
$$

\square It's a measure of the variance between the pixel and the mean value:

- Large values near sharp edge
- Small values in the blur regions

Local mean square error map

\square We consider the relative local to global variance as our blur factor. Let be V_{0} the mean square error of the entire image, so:

$$
q_{2}=\frac{V_{p}-V_{0}}{V_{0}}
$$

Maximum saturation

\square It's observed that blurred pixels tend to have less vivid colors than non-blurred pixels
\square For this reason color information is also useful for blur detection
\square We compute the saturation color for every pixel as:

$$
S_{p}=1-\frac{3}{R+G+B} \min \{R, G, B\}
$$

Maximum saturation

\square Then we find the maximum value for every patch
\square At last we compare it with the maximum saturation value of the whole image (S_{o}), in order to obtain the third blur factor:

$$
q_{3}=\frac{\max \left\{S_{p}\right\}-\max \left\{S_{0}\right\}}{\max \left\{S_{0}\right\}}
$$

Blur/non-blur mask

\square What do we do?

- The image is partioned to patches size of 20×20
- We set different thresholds T_{b} and T_{d} for each blur measure
- If $\mathrm{q}_{\mathrm{i}}<\mathrm{T}_{\mathrm{b}}$ the patch is marked as blurred with white color
- If $\mathrm{q}_{\mathrm{i}}>\mathrm{T}_{\mathrm{d}}$ the patch is marked as non-blurred region with black color
\square Results:
- There can be some detection errors
- Not all blur regions can be picked up
\square Reasons: for example color information between blur and non-blur regions is similar

Blur/non-blur mask

\square Hence we combine the three features to improve accuracy

\square That is:

- If all of the three features regard a patch blurred, then this patch is marked blurred
- If all of the three features regard a patch non-blurred, then this patch is marked non-blurred
- At the contrary patch is not marked

Results

\square We show obtained results for three images (blur regions and non-blur regions)
\square For everyone we display also the global trimap
\square It's important to highlight that we have to set different threshold T_{b} and T_{d} for every feature and for every image
\square Let be min_val $\left(q_{i}\right)$ the minimum value of all features q_{i} of the patches, and max_val $\left(q_{i}\right)$ the maximum value of all features q_{i} of the patches:

$$
\begin{aligned}
& \mathrm{T}_{\mathrm{b}}=\min _v a l+x \% \text { of }(\text { max_val }- \text { min_} v a l) \\
& \mathrm{T}_{\mathrm{d}}=\text { max_val }-y \% \text { of }(\text { max_val }- \text { min_val })
\end{aligned}
$$

Test 1

Test 1: Gradient histogram span

Blur regions:

$\mathrm{T}_{\mathrm{b}}=$ min_val + 9% of range

Test 1: Gradient histogram span

Non-blur regions:
$\mathrm{T}_{\mathrm{d}}=$ max_val50% of range

Test 1: Local mean square error map

Blur regions:

$\mathrm{T}_{\mathrm{b}}=$ min $_$val + 12.5% of range

Test 1: Local mean square error map

Non-blur regions:
$\mathrm{T}_{\mathrm{d}}=$ max_val80\% of range

Test 1: Maximum saturation

Blur regions:

$\mathrm{T}_{\mathrm{b}}=$ min_val + 17% of range

Test 1: Maximum saturation

Non-blur regions:
$\mathrm{T}_{\mathrm{d}}=$ max_val62.5% of range

Test 1: trimap

Test 2

Test 2: Gradient histogram span

Blur regions:
$\mathrm{T}_{\mathrm{b}}=$ min $_$val + 8.5% of range

Test 2: Gradient histogram span

Non-blur regions:
$\mathrm{T}_{\mathrm{d}}=$ max_val50% of range

Test 2: Local mean square error map

\bigcirc

Test 2: Local mean square error map (O)

Non-blur regions:
$\mathrm{T}_{\mathrm{d}}=$ max_val76% of range

Test 2: Maximum saturation

Test 2: Maximum saturation

Non-blur regions:
$\mathrm{T}_{\mathrm{d}}=$ max_val66% of range

Test 2: trimap (0)

Test 3

Test 3: Gradient histogram span

Blur regions:
$\mathrm{T}_{\mathrm{b}}=$ min_val + 6% of range

Test 3: Gradient histogram span

Non-blur regions:
$\mathrm{T}_{\mathrm{d}}=$ max_val62.5% of range

Test 3: Local mean square error map

 \longrightarrow

Blur regions:
$\mathrm{T}_{\mathrm{b}}=$ min $_$val + 14% of range

Test 3: Local mean square error map (1)

Non-blur regions:
$\mathrm{T}_{\mathrm{d}}=$ max_val66\% of range

Test 3: Maximum saturation

\longrightarrow

Blur regions:
$\mathrm{T}_{\mathrm{b}}=$ min $_$val + 50% of range

Test 3: Maximum saturation

Non-blur regions:

$$
\begin{gathered}
\mathrm{T}_{\mathrm{d}}=\text { max_val - } \\
1 \% \text { of range }
\end{gathered}
$$

Test 3: trimap

Remarks

\square Starting from results we can observe that:

- Method 1 and method 2 work efficiently
- Method 3 presents some imperfection more
- Trimaps allow to remove all blur/non-blur regions identified wrongly
\square Possible reasons:
- Color information similar between blur and non-blur regions
- Choice of thresholds
\square All of these observations agree in principle with that one of the original paper

Image matting

\square Separation of a foreground object from the background
\square Idea: it's assumed that each pixel $\mathrm{x}=(\mathrm{i}, \mathrm{j})$ in an image I (x) is a linear combination of a foreground color and a background color. In particular:

$$
I(x)=\alpha_{x} F(x)+\left(1-\alpha_{x}\right) B(x)
$$

$\square \alpha_{x}$ is the opacity value for each pixel, ranged from o to 1

Overview

\square In the original paper, Wang proposed an iterative optimization algorithm to generate a matte, starting from a few user specified foreground and background pixels
\square In our work, blur and non-blur regions substitute those marked by user
\square The goal of this method is to determine, for each pixel p :
a foreground color, F

- a background color, B
an alpha value between o to $1, a$
and to reduce the uncertainty u (also between 0 and 1) of these values

Overview

\square Input:

- Mixed color of each pixel, C
- Few foreground and background pixels (obtained from first part)
\square Marked pixels are characterized by:
- Uncertainty of o
- Alpha value of o (background) or 1 (foreground)
- Their foreground or background values (C)
\square All other pixels are initialized to have $\alpha=0.5$ and $u=1$

Overview

\square We divide pixels in three groups:

- U_{c} : pixels whose alpha values have been estimated in previous iterations and uncertainty is equal to zero
- U_{e} : pixels whose alpha values have been estimated in previous iterations and uncertainty is not equal to zero
U_{n} : pixels not yet considered
\square The approach proceeds iteratively:
- Scan each pixel of the image:
- If $p €\left(\mathrm{U}_{\mathrm{n}}\right.$ or $\left.\mathrm{U}_{\mathrm{e}}\right)$ and it's nearby to ones in $\left(\mathrm{U}_{\mathrm{c}}\right.$ or $\left.\mathrm{U}_{\mathrm{e}}\right)$ (within 15 pixels) then it's added to U_{e} and (F, B, α and u) are estimated or re-estimated
- The algorithm stops when U_{n} is null and the sum of all pixel uncertainties cannot be reduced anymore

Overview

Algorithm: local sampling area

\square We discretize the possible alpha value to 25 levels between 0 and $1: \alpha^{k}, k=1,2, \ldots, 25$
\square In order to estimate α_{p} we sample a group of previously estimated foreground or background colors from the neighborhood of the node p (local neighborhood area with radius $r=20$ around p)
\square In order to be a vaild...
...foreground sample then $\alpha_{s}>a_{p}$
...background sample then $\alpha_{s}<\alpha_{p}$

Algorithm: weights

\square The set of valid samples, p_{i}, is then weighted in this way:

$$
\omega_{i}^{x}=\left(1-u\left(p_{i}\right)\right) \exp \left(\frac{-s\left(p, p_{i}\right)^{2}}{\sigma_{w}^{2}}\right)
$$

\square Where:
$\mathrm{s}\left(\mathrm{p}, \mathrm{p}_{\mathrm{i}}\right)$ is the spatial distance between the two points

$$
\sigma_{\mathrm{w}}=\mathrm{r} / 2
$$

x represents the foreground sample ($\mathrm{x}=\mathrm{F}$) or the background sample ($\mathrm{x}=\mathrm{B}$)
\square We consider the $\mathrm{N}=12$ largest weights found in the local area (both for foreground and background pixels)

Algorithm: global sampling area

\square Problem: it's possible that there aren't N valid foreground and background samples for a pixel
\square Solution used in the paper:

- GrubCut system proposed by Rother , Kolmogorov and Blake
- Idea: train a Gaussian Mixture Model on the user specified foreground and background pixels and then to assign each marked pixel to a single Gaussian in the GMM
- Random selection of pixel by each gaussian
\square We have not implemented this method

Algorithm: global sampling area

\square Initial implemented solution:

- We save all the positions of foreground pixels marked at the beginning of the process (blur/non-blur mask)
- Let be:
- X: number of foreground samples found in the local area
- f_p: array containing the positions of foreground pixels marked at the beginning of the algorithm
- L: length off_p
- So we extract N-X random numbers between 1 and L, indicating locations of foreground pixels to consider
- Same method is applied to get background samples

Algorithm: global sampling area

\square Problem: extracted samples are too distant from analysed pixel...
\square...following operations don't work accurately
\square Conclusive solution:

- If a pixel is surrounded only by foreground samples, then that pixel is setted as foreground (following steps will be not considered until update operation)
- Similar procedure for background samples

Overall view

Algorithm: probability histogram of alpha levels

\square So, given the foreground and background samples and corresponding weights, we compute the likelihood of each alpha level α^{k} :

$$
L_{k}(p)=\frac{1}{N^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} \omega_{i}^{F} \omega_{j}^{B} \exp \left[\frac{-d_{c}\left(C_{p}, \alpha^{k} F_{i}+\left(1-\alpha^{k}\right) B_{j}\right)^{2}}{2 \sigma_{d}^{k^{2}}}\right]
$$

\square Where:
F_{i} are foreground sample colors

- B_{i} are background sample colors
- C_{i} is the actual color of the examinated pixel p
- d_{c} is the euclidean distance in RGB space (distance between colors)
- $\sigma_{d}{ }^{k}$ is the covariance

Algorithm: covariance

\square The covariance is computed as:

$$
\sigma_{d}^{k}=\alpha^{k} \sigma_{F}+\left(1-\alpha^{k}\right) \sigma_{B}
$$

\square Where:

- σ_{F} is the distance covariance among foreground samples
- σ_{B} is the distance covariance among background samples

Algorithm: distance covariance

\square Let X_{k} with $\mathrm{k}=1, . ., \mathrm{N}$ the values of x -ground sample
\square First, compute elements:

$$
a_{j, k}=\left|X_{j}-X_{k}\right| \quad j, k=1,2, \ldots, N
$$

\square And then the matrix:

$$
A_{j, k}=a_{j, k}-\bar{a}_{j .}-\bar{a}_{. k}+\bar{a}_{.}
$$

$\bar{a}_{j .}$ is the j - th row mean
\bar{a}_{k} is the $\mathrm{k}-\mathrm{th}$ column mean
$\bar{a}_{\text {.. }}$ is the grand mean of the distance matrix

Algorithm: distance covariance

\square Finally, the distance covariance is computed by:

$$
\sigma_{x}=d \operatorname{Cov}_{N}(X, X)=\sqrt{\frac{1}{N^{2}} \sum_{j, k=1}^{N} A_{j, k}^{2}}
$$

Algorithm: update

\square Alfa:

$$
\alpha_{p}=\frac{k-1}{24}, k=\arg \left\{\max _{k}\left[L_{k}(p)\right]\right\}
$$

\square If $\alpha_{p}=1$:

- $\mathrm{F}_{\mathrm{P}}=\mathrm{C}_{\mathrm{P}}, \mathrm{B}_{\mathrm{P}}=\mathrm{o}$ and $\mathrm{u}_{\mathrm{P}}=\mathrm{o}$
\square If $\alpha_{p}=0$:
- $\mathrm{B}_{\mathrm{P}}=\mathrm{C}_{\mathrm{P}}, \mathrm{F}_{\mathrm{P}}=\mathrm{o}$ and $\mathrm{u}_{\mathrm{P}}=\mathrm{o}$

Algorithm: update

\square Else:

$$
F_{p}, B_{p}=\arg \left\{\min _{F_{i}, B_{j}}\left[C_{p}-\alpha_{p} F_{i}-\left(1-\alpha_{p}\right) B_{j}\right]^{2}\right\}
$$

\square Finally:

$$
u_{p}=1-\sqrt{\left(\omega^{F} \omega^{B}\right)}
$$

\square Where:

- ω^{F} is the weigth for the foreground sample
- ω^{B} is the weigth for the background sample

Algorithm: end

\square The algorithm halts when U_{n} is null (each pixel has been analyzed) and the total uncertainty of the whole matte cannot be reduced any further
...Now, starting from trimap of the three analyzed images, let's show opacity (alpha) map for each one...

Test 1: extracted matte

Test 1: foreground (O)

Test 2: extracted matte

Test 2: foreground (1)

Test 3: extracted matte

Test 3: foreground

Remarks

\square Results are not fully correct
\square However we expected this kind of results, indeed:

- Original paper has implemented a smooth operation we have not considered
- Slight errors in the trimap...

Effectiveness measures

\square Now we want to show numerical results about implemented work
\square For this reason we have:

- searched single thresholds to apply to each image in order to obtain the best trimap
- effected post-processing operations
- computed algorithm to a set of 10 images
\square Then we have evaluated the efficiency by means of three parameters:
- accuracy
- precision
- recall

Calculating Accuracy, Precision and Recall

$\mathrm{a}=$ properly observed foreground
b = wrongly observed background
$\mathrm{c}=$ wrongly observed foreground
d = properly observed foreground

Calculating Accuracy, Precision and Recall

\square Accuracy:

$$
\frac{a+d}{a+b+c+d}
$$

\square Precision:
Foreground $\rightarrow \frac{a}{a+c} \quad$ Background $\rightarrow \frac{d}{b+d}$
\square Recall:
Foreground $\rightarrow \frac{a}{a+b}$
Background $\rightarrow \frac{d}{c+d}$

Ground truth

\square In order to obtain the ground truth we have manually selected and segmentd each image into 20×20 patches and we have marked them as foreground or background
\square We have created an easy script with Matlab in order to simplify this operation

Ground truth

Parameters

\square Thresholds:

- Gradient histogram span:

$$
\begin{aligned}
& P b=5 \% \pm u \\
& P d=60 \% \pm u
\end{aligned}
$$

- Local mean square error:

$$
\begin{aligned}
& P b=10 \% \pm u \\
& P d=60 \% \pm u
\end{aligned}
$$

- Maximum saturation:

$$
\begin{aligned}
& P b=35 \% \pm u \\
& P d=12 \% \pm u
\end{aligned}
$$

Parameters

\square In order to obtain a better trimap we've applied a change
\square We have assigned to each patch a counter:

- if a patch is marked as foreground by one of the three features then counter is increased by one
- if a patch is marked as background by one of the three features then counter is rediced by one
\square When a patch's been evaluated by all the three features:
- if counter $=1$ then $\alpha=2 / 3$ and $u=2 / 3$
- if counter $=2$ then $\alpha=2 / 3$ and $u=1 / 3$
- if counter $=3$ then $\alpha=1$ and $u=0$
- if counter $=-3$ then $\alpha=0$ and $u=0$
- else $\alpha=1 / 2$ and $u=1$

Post-processing

\square Furthermore we have operated some enhancement on the extracted matte, in order to obtain a more truthful result
\square In particular we have applied on the extracted matte:

- A 3x3 mean filter
- Segmentation
- The morphological operation closing
- The morphological operation opening

Post-processing

 (O)\square Original extracted matte

Mean filter

\square Uniforming the opacity map

Segmentation

\square Separating the foreground from the background

Closure

\square Removing of "holes" from the foreground

Opening

(
\square Removing small objects from background

Final results

Analysis of the test

$$
\begin{array}{r}
100,00 \% \\
95,00 \% \\
90,00 \% \\
85,00 \% \\
80,00 \% \\
75,00 \% \\
70,00 \% \\
65,00 \% \\
60,00 \%
\end{array}
$$

\rightarrow Accuracy \rightarrow Precision (F) \rightleftharpoons Recall (F)

Final results

Analysis of the test

$$
\begin{array}{r}
100,00 \% \\
95,00 \% \\
90,00 \% \\
85,00 \% \\
80,00 \% \\
75,00 \% \\
70,00 \% \\
65,00 \% \\
60,00 \%
\end{array}
$$

\rightarrow Accuracy \rightarrow Precision (B) $\quad \pm$ Recall (B)

Final results

\square Here we show the overall data of accuracy -precision - recall considering the combination of all the images:

Accuracy	Precision Of Foreground	Recall Of Foreground	Precision Of Background	Recall Of Background
90%	$84,5 \%$	$87,5 \%$	93%	$91,5 \%$

