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Introduction

Fields of engagement: traffic



Introduction

In systems of reading motor vehicle license plate is frequent to use a dual-head
system:
 The first head performs the reading of license plate
 The second head is used as the camera of the context in order to have an image

with a wider field of view which documents the passage of the vehicle and possibly
allows you to make out the vehicle shape

Main problems:
Night vision license plate

View the vehicle shape



Techniques

 Histogram equalization

 Ahe - Adaptive Histogram Equalization 

 Clahe - Contrast limited Ahe

 ACE

 Retinex



Histogram equalization



Histogram equalization

 the histogram of an image is a discrete function:

where:
L is the number of values that can be assumed by each pixel (from 0 to 255)

is the number of pixels with intensity k
is the number of image pixels

 The function         (                       ) is an estimation of the probability distribution of 
the pixel intensity

is the cumulative function

 The Histogram provides information about statistical image properties useful for 
contrast enhancement 



Histogram equalization - algorithm

algorithm to equalize a grayscale image using histogram:

1- compute the image histogram
2- compute the cumulative function
3- apply trasformation
4- Rescale Ieq[i,j] form [0 - 1] to [0,...,L - 1]

Advantages: it is very simple
Disadvantages: it doesn’t take account of local image information



Histogram equalization - examples

 Useful for homogeneous image
Low contrast image have a narrow histogram: 



Histogram equalization - examples

 Image after equalization

k

heq(k)



Histogram equalization - Results



Histogram equalization - Results

This method is useful only if we use homogeneous images. When we apply this
method to our images the results are not satisfied:



Adaptive Histogram Equalization



AHE - adaptive histogram equalization

 It differs from ordinary histogram equalization 
 computes several histograms each corresponding to a distinct section of the image
 suitable for improving the local contrast of an image and bringing out more detail

The traditional AHE algorithm can be expressed as in Algorithm 1
we assume the square contextual region with block size W2 in AHE

Algorithm 1 Traditional AHE 
for every pixel i (with grey level l)in image do
Initialize array Hist to zero;

for every contextual pixel j do

end
Sum: 

end



AHE - adaptive histogram equalization

we could find that AHE is quite computationally expensive:

 For every pixel, it need W2 additions to get the local histogram, and l additions for 
CHistl, one multiplication and one division to map the origin grey level to new one

 For an image with size M*N, AHE’s computation complexity will be O(M*N*W2),            
when the image size and block size become large, the computation time becomes 
unbearable

 the expensive computation complexity prohibits it to be used in real-time occasion

FAST AHE 



FAST - AHE

to reduce the computation:
 when window center moves from A to B, in order to obtain the histogram of the 

next block, we need not re-scan the entire contextual region
 we can just remove the left column pixels of last block from current histogram and 

add the right column of current block to it

Only the first block in an image needs to process every pixel in the block



AHE - adaptive histogram equalization

Car shape



AHE- adaptive histogram equalization

Car shape



Clahe - Contrast limited Ahe



Clahe - Contrast Limited Adaptive Histogram 
Equalization

 Contrast Limited AHE differs from ordinary adaptive histogram equalization in its 
contrast limiting

 it was developed to prevent the overamplification of noise that adaptive histogram 
equalization can give rise to

 by clipping the histogram at a predefined value before computing the cumulative 
density function. This limits the slope of the cumulative density function and 
therefore of the transformation function



Clahe - Contrast Limited Adaptive Histogram 
Equalization

 The value at which the histogram is clipped, the so-called clip limit, depends 
on the normalization of the histogram and thereby on the size of the 
neighbourhood region

 It is advantageous not to discard the part of the histogram that exceeds the 
clip limit but to redistribute it equally among all histogram bins



Clahe - Contrast Limited Adaptive Histogram 
Equalization

Clipping level = 0.1                                               Clipping level = 0.02



Clahe - Contrast Limited Adaptive Histogram 
Equalization 



RETINEX



Assumption

 Retinex is a simplified model of the HVS

The perceived color of a unit area is determined by the
relationship between this unit area and the rest of unit
areas in the image, indipendently in each wave-band,
and does not depend on the absolute value of light

There is a quantity called ‘’lightness’’ which is
associated to the objects regardless of changes in the
illumination or in the position of the objects in the
scene



Retinex Algorithm

The lightness information is estimated by computing
sequential ratios between values at adjacent points of
a series of random paths in the image

Changes above a certain threshold are considered as
changes in reflectance. If instead color changes are
smaller than the threshold they are considered as
illumination changes, and the current ratio is set to one

After computing on many paths, the result on each
path is averaged to obtain the lightness



Retinex Algorithm

The image data I(x) is the intensity value for each chromatic channel at x.

Consider a collection of N paths ϒ1, . . . , ϒN starting at jk and ending at x.

Let nk be the number of pixels of the path ϒk and denote by xtk = ϒk(tk) for tk = 1,. . . , nk and by
x(tk+1) = ϒk(tk + 1) the subsequent pixel of the path.

The lightness value L(x) of a pixel x in a given chromatic channel is the average of the relative
lightness at x over all paths, that is

where L(x; jk) denotes the relative lightness of a pixel x with respect to jk defined by

and, for a fixed threshold t,



Fast Implementation of Retinex
Retinex formalized as a Poisson equation.

Define:

where x−0, x+0, x0− and x0+ represent the four discrete x-neighbors, and f(x) =    (log x)

The lightness value in a chromatic channel L is the unique solution of the discrete 
Poisson equation with Neumann boundary condition,

If we take (s) = s then the function F becomes Δd log(I(x)) and the equation becomes
ΔdL(x) = Δd log(I(x)) 

The Poisson equation can be solved using the Fourier transform.

Ƒ[ΔdL(x)] = Ƒ[Δd log(I(x))] 



Fast Implementation of Retinex

The algorithm (applied to each channel) therefore is:

1. Compute F(i,j);
2. Compute the Fourier transform of F by DFT 
3. Deduce the Fourier transform of L using the formula above;
4. Compute the final solution L by the inverse DFT and apply the normalization.





t=4

car license plate

context



t=8

car license plate

context



Retinex - Results



ACE

Automatic Color Enhancement



Introduction

The ACE method is based on a simple model of the human
visual system.

 It’s inspired by several low level mechanisms:

-gray world: the average perceived color is gray

-white patch: normalization toward a white reference

-lateral inhibition

The enhanced image appears natural because the input image
is adjusted in a manner consistent with perception.



THE IDEA
I = input grayscale image with domain Ω and intensity values scaled in [0, 1]. 

For a color image, the following operation is performed,independently on the 
RGB channels:

Where :   Ω\x denotes {y ∈ Ω : y x}, 
ǁx-yǁ denotes Euclidean distance, 
sα : [−1, 1] → R is the slope function sα(t) = min{max{αt,−1}, 1 } for some  α ≥ 1.

In the limit  α→ ∞, it is the signum function sα(t)=sign(t).

1° STAGE



The enhanced channnel is computed by stretching R to [0,1] as

THE IDEA

2° STAGE

The first stage of the method adapts local image contrast.
Lateral inhibition is simulated by neighbor differences I(x) − I(y) and weighting
according to distance ǁx − yǁ.
The function sα amplifies small differences and saturates large differences, which
has the effect of expanding or compressing the dynamic range according to the
local image content.

The second stage adapts the image to obtain a global white balance.
By implementing these mechanisms, ACE is a simplified model of the human
visual system: the enhancement process is consistent with perception.



Boundary Handling and Convolutions
Define the half-sample symmetric extension Ef of an N-sample sequence f

Ef is 2N-periodic,
The domain can be interpreted to be a circle of 2N samples.

1 D

2 D

where |v|:=             and     denotes equivalence on torus.vv
2

2

2
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The tensor product of this extension applied to an N × N image ui,j , i = 0, . . . ,N − 1,
j = 0, . . . ,N − 1

In 2D, the domain is the 2N × 2N-periodic torus T2.
For any x, y ∈ T2, distance is defined on the torus as



Boundary Handling and Convolutions
The summation R(x)  is redefined as a summation over the torus T2\x, and 
Euclidean distance ǁx − yǁ is replaced by torus distance d(x − y):



Boundary Handling and Convolutions

Defining:

we compute R as:

Both algorithms (Polynomial Slope Function and Interpolation) will approximate R in 
terms of convolutions with ω on T².



1.Polynomial Approximation
The key change to the ACE method is to approximate min{max{αt,−1}, 1}  with
an odd polynomial approximation:
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It is then possible to decompose R into a sum of convolutions:

where ∗ is cyclic convolution over T².



1.Polynomial Approximation
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By the Stone–Weierstrass theorem, the continuous function sα(t) can be uniformly
approximated on [−1, 1] by a polynomial with any desired precision.

3M convolutions must be evaluated for an Mth degree polynomial  compromise is
necessary between accuracy and speed.

For a fixed polynomial degree M, we select the coefficients cm to minimize the
maximum absolute error over [−1, 1],



1.Polynomial Approximation

The optimal c can be found using the Remez algorithm. 

Optimal 9th degree approximation of sα for different α.



For fixed polynomial degree, the approximation error increases with α.

1.Polynomial Approximation

Top row: sα and its 9th degree approximation. Bottom row: approximation error.



2.Interpolation
Define the sum:

where I(x) has been replaced by a constant L. Since the argument of sα now depends
only on y, the sum is a convolution. This allows for a fast algorithm to approximate ACE.

Let (Lj) be a sequence such that min I = L1 < L2 < · · · < LJ = max I, and compute          
R(x; Lj), j = 1, . . . , J. 
Then approximate R(x) = R(x; I(x)) by piecewise linear interpolation

(Lj) is uniformly spaced, 

Using J = 8 levels provides an accurate approximation for typical images.



ACE – Results





α= 2, omega = 1/r Degree 9 polynomial approximation



α= 5, omega = 1/r Degree 9 polynomial approximation

Equivalent to interpolation method



α= 5, omega = 1/r Interpolation with 8 levels

Equivalent to polynomial approximation method



\
α= 8, omega = 1/r Degree 9 polynomial approximation

α : histogram equalization



Ace - Results



Comparison
original image he ahe

clahe retinex ace



original image he ahe

clahe retinex ace

Comparison



Comparison

retinexclahe

ahehe

ace

original image
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